## LECTURE 3: TRIPLE INTEGRALS (II)

Today is all about more practice with triple integrals!
Again, our mantra is: Picture, Inequalities, Math (PIM method)

## 1. Other directions

From the creator of One Direction comes a new band called Other directions.

Example: Calculate $\iiint_{E} 3 d x d y d x$, where
$E$ is the solid enclosed by $x^{2}+z^{2}=4, y=-1$, and $y+z=4$
(1) Picture:
$x^{2}+z^{2}=4$ is a cylinder, but in the $\mathbf{y}$-direction (because $y$ is missing)
$y+z=4$ is a plane, but in the $x$-direction (to draw this, draw the line $y+z=4$ and move it along the $x$ axis)

[^0]

## Better picture:


(Book calls it Type 2 region)
(2) Inequalities: Now it's usually Small $\leq z \leq$ Big, but since everything is in the $y$-direction, this time it's:

Small $\leq y \leq \operatorname{Big} \Rightarrow-1 \leq y \leq 4-z$
Note: To see this, just tilt your head and see which function is above and below you!

## (3) Find $D$

$D$ is still the shadow below the surface, but this time in the y-direction. So $D$ is a disk of radius 2 in $x$ and $z$


Hence we get $0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$ In particular $x=$ $r \cos (\theta), z=r \sin (\theta)$
(4) Integrate (Math)

$$
\begin{aligned}
\iiint_{E} 3 d x d y d z= & \int_{0}^{2 \pi} \int_{0}^{2} \int_{-1}^{4-z} 3 r d y d r d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{2} \int_{-1}^{4-r \sin (\theta)} 3 r d y d r d \theta(\text { Use } z=r \sin (\theta)) \\
= & \int_{0}^{2 \pi} \int_{0}^{2} 3 r[4-r \sin (\theta)-(-1)] d r d \theta \\
& (r \text { doesn’t depend on } y) \\
= & \int_{0}^{2 \pi} \int_{0}^{2} 3 r(5-r \sin (\theta)) d r d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{2} 15 r-3 r^{2} \sin (\theta) d r d \theta \\
= & \cdots \\
= & 60 \pi
\end{aligned}
$$

Note: Sometimes your surface faces the $x$-direction, as in the following picture


In that case, the bigger function is the function in front, and the smaller one is the one in the back, and $D$ is the shadow behind the surface.

## 2. Volumes

Remember that in general a triple integral doesn't calculate a volume, but there is one special case where it does:

Fact:

$$
\operatorname{Vol}(E)=\iiint_{E} 1 d x d y d z
$$

(In my opinion better to use this than double integral of bigger minus smaller)

Example Find $\operatorname{Vol}(E)$ where $E$ is the region enclosed by the surfaces $y=x^{2}, z=0, z=1-y$

## (1) Picture:

Note: $y=x^{2}($ no $z)$ is a cylinder in the $z$ direction parallel to the parabola $y=x^{2}$. And $z=1-y$ (no $x$ ) is a plane in the $x$ direction. (Visualize $E$ as cutting a parabola along a plane)


(2) Inequalities: Small $\leq z \leq \operatorname{Big} \Rightarrow 0 \leq z \leq 1-y$
(3) Find $D$

Note: Notice $z=0$ in $D$, so $z=1-y \Rightarrow 0=1-y \Rightarrow y=1$


Small $\leq y \leq \operatorname{Big} \Rightarrow x^{2} \leq y \leq 1$
Left $\leq x \leq$ Right $\Rightarrow-1 \leq x \leq 1\left(\right.$ since $\left.x^{2}=1 \Rightarrow x= \pm 1\right)$
(4) Integrate:

$$
\begin{aligned}
\operatorname{Vol}(E) & =\iiint_{E} 1 d x d y d z \\
& =\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} 1 d z d y d x \\
& =\int_{-1}^{1} \int_{x^{2}}^{1} 1-y d y d x \\
& =\cdots \\
& =\frac{8}{15}
\end{aligned}
$$

Warning: For volume questions shouldn't get 0 or a negative answer!

## 3. Intersection of two cylinders

Video: Intersection of two cylinders
Last but not least, let me give you a challenge problem that math can sometimes solve things our eyes cannot see!

Example: Find the volume of the intersection of the cylinders $x^{2}+$ $y^{2}=1$ and $x^{2}+z^{2}=1$

## (1) Picture:

$x^{2}+y^{2}=1$ (no $z$ ) is a cylinder in the $z$-direction, and $x^{2}+z^{2}=1$ (no $x$ ) is a cylinder in the $y$-direction.


Problem: $E$ is hella hard to visualize! In that case: Believe in the math, not your eyes!

(2) Inequalities:

Smaller $\leq z \leq$ Bigger

$$
z^{2}+x^{2}=1 \Rightarrow z^{2}=1-x^{2} \Rightarrow z= \pm \sqrt{1-x^{2}}
$$

Small $=-\sqrt{1-x^{2}}$ and $\operatorname{Big}=\sqrt{1-x^{2}}$, and so
$-\sqrt{1-x^{2}} \leq z \leq \sqrt{1-x^{2}}$
Note: Why use $z^{2}+x^{2}=1$ ? It's the only equation with $z$ ! Also it makes sense in terms of the first picture and it's the direction that makes $D$ the easiest.
(3) Find $D$

Based on the pictures above, $D$ is a disk of radius 1 (you can get that by setting $z=0$ in $x^{2}+y^{2}=1$ )


Warning: You could use polar coordinates here, but if you do that (and I invite you to try it out), it becomes a HUGE mess,
so instead go back to the bigger and smaller technique: Smaller $\leq y \leq$ Bigger

$$
\begin{aligned}
& x^{2}+y^{2}=1 \Rightarrow y^{2}=1-x^{2} \Rightarrow-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}} \\
& \text { So }-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}} \text { and }-1 \leq x \leq 1
\end{aligned}
$$

(4) Integrate:

$$
\begin{aligned}
\operatorname{Vol}(E) & =\iiint_{E} 1 d x d y d z \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d z d y d x \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}}-\left(-\sqrt{1-x^{2}}\right) d y d x \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 2 \sqrt{1-x^{2}} d y d x \\
& =\int_{-1}^{1} 2 \sqrt{1-x^{2}}\left(\sqrt{1-x^{2}}-\left(-\sqrt{1-x^{2}}\right)\right) d x \\
& =\int_{-1}^{1} 2 \sqrt{1-x^{2}} 2 \sqrt{1-x^{2}} d x \\
& =\int_{-1}^{1} 4\left(1-x^{2}\right) d x \\
& =\frac{16}{3}
\end{aligned}
$$

Note: In case you're curious what $E$ looks like, here's a picture:


Optional: If you're even more curious: Volume of Intersection of 3 Cylinders


[^0]:    Date: Friday, January 10, 2020.

