LECTURE 5: SPHERICAL COORDINATES

Today's lecture is about spherical coordinates, which is *the* correct generalization of polar coordinates to three dimensions.

1. Spherical Coordinates

Idea: Represent points as (ρ, θ, ϕ) , where:

- (1) $\rho = \text{distance from 0 to } (x, y, z) \text{ (RHOdius)}$
- (2) θ = angle between (x, y) and x-axis (**THO**rizontal)
- (3) $\phi = \text{angle between } (x, y, z) \text{ and } z \text{axis } (\mathbf{PHErtical})$

Date: Tuesday, January 14, 2020.

Remarks:

(1) Think of θ as a longitude and ϕ as a latitude

(2) Constraints

$$\rho \ge 0$$
$$0 \le \theta \le 2\pi$$
$$0 \le \phi \le \pi$$

(3) Most important property: $x^2 + y^2 + z^2 = \rho^2$ (much easier!)

Example: Plot the following points:

(a)
$$(1, \frac{\pi}{4}, \frac{\pi}{6})$$

Think like the hands of a robot You move horizontally (= right) by $\frac{\pi}{4}$, starting from the x-axis and move vertically (= down) by $\frac{\pi}{6}$ starting from the z-axis.

(b) $(2, \frac{7\pi}{4}, \frac{\pi}{4})$

(c)
$$(2, \frac{\pi}{3}, \frac{2\pi}{3})$$

Just like last time, this is useful because a lot of familiar objects can be written really neatly in terms of spherical coordinates.

Example: Sketch the following surfaces

(a)
$$\rho = 3$$

$$\sqrt{x^2 + y^2 + z^2} = 3 \Rightarrow x^2 + y^2 + z^2 = 9$$
 Sphere

Point: $\rho = 3$ is much easier than $x^2 + y^2 + z^2 = 9$

(b)
$$\theta = \frac{\pi}{3}$$

Half-plane through $\theta = \frac{\pi}{3}$ (just like last time)

(c)
$$\phi = \frac{\pi}{6}$$

Upper-cone!

Note: Lower cone is $\phi = \frac{5\pi}{6}$

2. Derivation of Spherical Coordinates

Video: Derivation of Spherical Coordinates

Goal: Find equations for x, y, z in terms of ρ, θ, ϕ (similar to $x = r\cos(\theta)$ for polar coordinates)

Note: You have to know how to derive this for the exams!

(1) **Picture:** Here r is the distance between O and (x, y) (like for cylindrical coordinates)

(2) Focus on the following triangle:

By SOHCAHTOA, we have:

$$\cos(\phi) = \frac{z}{\rho} \Rightarrow z = \rho \cos(\phi)$$

And also:

$$\sin(\phi) = \frac{r}{\rho} \Rightarrow r = \rho \sin(\phi)$$

(3) The rest is just polar coordinates and the formula for r above:

$$x = r\cos(\theta) \Rightarrow x = \rho\sin(\phi)\cos(\theta)$$
$$y = r\sin(\theta) \Rightarrow y = \rho\sin(\phi)\sin(\theta)$$

Summary:

$$x = \rho \sin(\phi) \cos(\theta)$$
$$y = \rho \sin(\phi) \sin(\theta)$$
$$z = \rho \cos(\phi)$$

Note: Do not memorize this. On the exam, I will give you the equations for spherical coordinates.

3. Integrals with Spherical Coordinates

Now let's see why spherical coordinates are awesome! They allow us to simplify complicated integrals like crazy (= Bazooka of math)

Note: Spherical coordinates are great for spheres and cones.

Example: Find the volume of a ball of radius R.

(1)

$$V = \int \int \int_{E} 1 \, dx dy dz$$

E = Ball of radius R

(2) Picture:

(3) **Inequalities:** Basically no restrictions on θ and ϕ

$$0 \le \rho \le R$$
$$0 \le \theta \le 2\pi$$
$$0 \le \phi \le \pi$$

(4) Integrate

$$\int \int \int_{E} 1 \, dx \, dy \, dz = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{R} \rho^{2} \sin(\phi) \, d\rho \, d\theta \, d\phi$$

$$= \left(\int_{0}^{R} \rho^{2} \, d\rho \right) \left(\int_{0}^{\pi} \sin(\phi) \, d\phi \right) \left(\int_{0}^{2\pi} 1 \, d\theta \right)$$

$$= \frac{R^{3}}{3} (2)(2\pi)$$

$$= \frac{4}{3} \pi R^{3}$$

Note: Don't memorize the $\rho^2 \sin(\phi)$ term, it will be given to you on the exams

Note: Very roughly speaking, in polar coordinates we had $rdrd\theta$, but here we have:

$$\rho r dr d\theta d\phi = \rho(\rho \sin(\phi)) d\rho d\theta d\phi = \rho^2 \sin(\phi) d\rho d\theta d\phi$$

If you want a more geometric explanation, please see the *optional* appendix below:

4. OPTIONAL APPENDIX: $\rho^2 \sin(\phi)$

Question: Why do we get $\rho^2 \sin(\phi)$?

Recall: The length of an arc of radius L and angle α is $L\alpha$

This follows from proportionality: An angle of 2π (a full circle) corresponds to $2\pi L$, hence an angle of α corresponds to αL .

Now fix a point (x, y, z) and move around that point a little bit by changing ρ, θ, ϕ . If you do that, then in spherical coordinates you get a little wedge, as in the following picture:

Picture:

The volume of that wedge is approximately:

Volume
$$\approx$$
 Length \times Width \times Height

- (1) Length = $d\rho$ (Small change in the radius)
- (2) Width = $rd\theta = \rho \sin(\phi)d\theta$

(3) Height = $\rho d\theta$ (because arclength of length ρ and angle $d\phi$)
Therefore:

Volume
$$\approx (d\rho)(\rho\sin(\phi)d\theta)(\rho d\phi) = \rho^2\sin(\phi)d\rho d\theta d\phi$$