LECTURE 5: SPHERICAL COORDINATES

Today's lecture is about spherical coordinates, which is the correct generalization of polar coordinates to three dimensions.

1. Spherical Coordinates

Idea: Represent points as (ρ, θ, ϕ), where:
(1) $\rho=$ distance from 0 to (x, y, z) (RHOdius)
(2) $\theta=$ angle between (x, y) and x-axis (THOrizontal)
(3) $\phi=$ angle between (x, y, z) and z-axis (PHErtical)

Date: Tuesday, January 14, 2020.

Remarks:

(1) Think of θ as a longitude and ϕ as a latitude

(2) Constraints

$$
\begin{array}{r}
\rho \geq 0 \\
0 \leq \theta \leq 2 \pi \\
0 \leq \phi \leq \pi
\end{array}
$$

(3) Most important property: $x^{2}+y^{2}+z^{2}=\rho^{2}$ (much easier!)

Example: Plot the following points:
(a) $\left(1, \frac{\pi}{4}, \frac{\pi}{6}\right)$

Think like the hands of a robot You move horizontally (= right) by $\frac{\pi}{4}$, starting from the x-axis and move vertically (= down) by $\frac{\pi}{6}$ starting from the z-axis.

(b) $\left(2, \frac{7 \pi}{4}, \frac{\pi}{4}\right)$

(c) $\left(2, \frac{\pi}{3}, \frac{2 \pi}{3}\right)$

Just like last time, this is useful because a lot of familiar objects can be written really neatly in terms of spherical coordinates.

Example: Sketch the following surfaces
(a) $\rho=3$

$$
\sqrt{x^{2}+y^{2}+z^{2}}=3 \Rightarrow x^{2}+y^{2}+z^{2}=9 \text { Sphere }
$$

Point: $\rho=3$ is much easier than $x^{2}+y^{2}+z^{2}=9$
(b) $\theta=\frac{\pi}{3}$

Half-plane through $\theta=\frac{\pi}{3}$ (just like last time)

(c) $\phi=\frac{\pi}{6}$

Upper-cone!

Note: Lower cone is $\phi=\frac{5 \pi}{6}$

2. Derivation of Spherical Coordinates

Video: Derivation of Spherical Coordinates
Goal: Find equations for x, y, z in terms of ρ, θ, ϕ (similar to $x=$ $r \cos (\theta)$ for polar coordinates)

Note: You have to know how to derive this for the exams!
(1) Picture: Here r is the distance between O and (x, y) (like for cylindrical coordinates)

(2) Focus on the following triangle:

By SOHCAHTOA, we have:

$$
\cos (\phi)=\frac{z}{\rho} \Rightarrow z=\rho \cos (\phi)
$$

And also:

$$
\sin (\phi)=\frac{r}{\rho} \Rightarrow r=\rho \sin (\phi)
$$

(3) The rest is just polar coordinates and the formula for r above:

$$
\begin{aligned}
& x=r \cos (\theta) \Rightarrow x=\rho \sin (\phi) \cos (\theta) \\
& y=r \sin (\theta) \Rightarrow y=\rho \sin (\phi) \sin (\theta)
\end{aligned}
$$

$$
\begin{aligned}
& x=\rho \sin (\phi) \cos (\theta) \\
& y=\rho \sin (\phi) \sin (\theta) \\
& z=\rho \cos (\phi)
\end{aligned}
$$

Note: Do not memorize this. On the exam, I will give you the equations for spherical coordinates.

3. Integrals with Spherical Coordinates

Now let's see why spherical coordinates are awesome! They allow us to simplify complicated integrals like crazy (= Bazooka of math)

Note: Spherical coordinates are great for spheres and cones.
Example: Find the volume of a ball of radius R.
(1)

$$
V=\iiint_{E} 1 d x d y d z
$$

$E=$ Ball of radius R

(2) Picture:

(3) Inequalities: Basically no restrictions on θ and ϕ

$$
\begin{gathered}
0 \leq \rho \leq R \\
0 \leq \theta \leq 2 \pi \\
0 \leq \phi \leq \pi
\end{gathered}
$$

(4) Integrate

$$
\begin{aligned}
\iiint_{E} 1 d x d y d z & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R} \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
& =\left(\int_{0}^{R} \rho^{2} d \rho\right)\left(\int_{0}^{\pi} \sin (\phi) d \phi\right)\left(\int_{0}^{2 \pi} 1 d \theta\right) \\
& =\frac{R^{3}}{3}(2)(2 \pi) \\
& =\frac{4}{3} \pi R^{3}
\end{aligned}
$$

Note: Don't memorize the $\rho^{2} \sin (\phi)$ term, it will be given to you on the exams

Note: Very roughly speaking, in polar coordinates we had $r d r d \theta$, but here we have:

$$
\rho r d r d \theta d \phi=\rho(\rho \sin (\phi)) d \rho d \theta d \phi=\rho^{2} \sin (\phi) d \rho d \theta d \phi
$$

If you want a more geometric explanation, please see the optional appendix below:
4. Optional Appendix: $\rho^{2} \sin (\phi)$

Question: Why do we get $\rho^{2} \sin (\phi)$?
Recall: The length of an arc of radius L and angle α is $L \alpha$

This follows from proportionality: An angle of 2π (a full circle) corresponds to $2 \pi L$, hence an angle of α corresponds to αL.

Now fix a point (x, y, z) and move around that point a little bit by changing ρ, θ, ϕ. If you do that, then in spherical coordinates you get a little wedge, as in the following picture:

Picture:

The volume of that wedge is approximately:

$$
\text { Volume } \approx \text { Length } \times \text { Width } \times \text { Height }
$$

(1) Length $=d \rho$ (Small change in the radius)
(2) Width $=r d \theta=\rho \sin (\phi) d \theta$

(3) Height $=\rho d \theta$ (because arclength of length ρ and angle $d \phi$) Therefore:

Volume $\approx(d \rho)(\rho \sin (\phi) d \theta)(\rho d \phi)=\rho^{2} \sin (\phi) d \rho d \theta d \phi$

