LECTURE 7: CHANGE OF VARIABLES (I)

Welcome to the one and only integration technique in this course: u-sub!

1. u-SUB THE 2 E WAY

Let me remind you of how to do u-sub from Math 2B, but I'll show you how to do it the Math 2E way (completely normal if this seems weird to you).

Example: Evaluate $\int_{1}^{2} e^{-x^{2}}(-2 x) d x$
(1) Let $u=-x^{2}$
(2) Endpoints: $u(1)=-1, u(2)=-4$.

So u turns $D=[1,2]$ into $D^{\prime}=[-1,-4]=[-4,-1]$.

(3) du: Beware of the absolute value! (makes sense, $d u$ should be positive)

$$
d u=\left|\frac{d u}{d x}\right| d x=|-2 x| d x=2 x d x \Rightarrow-2 x d x=-d u
$$

(4) Integrate

$$
\begin{aligned}
\int_{1}^{2} e^{-x^{2}}(-2 x) d x & =\int_{[1,2]} e^{-x^{2}}(-2 x) d x \\
& =\int_{D} e^{-x^{2}}(-2 x) d x \\
& =\int_{D^{\prime}} e^{u}(-d u) \\
& =-\int_{[-4,-1]} e^{u} d u \\
& =-\int_{-4}^{-1} e^{u} d u \\
& =e^{-4}-e^{-1}
\end{aligned}
$$

2. Multivariable Examples

Video: The Jacobian
The good news is that for double and triple integrals, the process is the exact same as above!

Example:

$$
\iint_{D} \sin \left(\frac{y-x}{y+x}\right) d x d y
$$

Where D is the square with vertices $(-1,0),(0,-1),(1,0),(0,1)$.
(1) Let $u=y-x, v=y+x$

(2) "Endpoints"

Trick: Look at the values of u and v at the vertices:

$$
\begin{aligned}
(-1,0) & \Rightarrow x=-1, y=0 \\
& \Rightarrow u=y-x=0-(-1)=1, v=y+x=0+(-1)=-1 \\
& \Rightarrow(1,-1) \\
(0,-1) & \Rightarrow u=-1-0=-1, v=-1+0=-1 \Rightarrow(-1,-1)
\end{aligned}
$$

Similarly $(1,0)$ becomes $(-1,1)$ and $(0,1)$ becomes $(1,1)$.

So D^{\prime} is a square with vertices $(1,-1),(-1,-1),(-1,1),(1,1)$
(3) "du $=\left|\frac{d u}{d x}\right| d x^{\prime \prime}$

Here we get

$$
d u d v=\left|\frac{d u d v}{d x d y}\right| d x d y
$$

Problem: Before we only had one choice $\frac{d u}{d x}$ but here we have many choices, like $\frac{\partial u}{\partial x}$ or $\frac{\partial v}{\partial y}$.

$$
\frac{d u d v}{d x d y}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|=(-1)(1)-(1)(1)=-2
$$

Therefore:

$$
d u d v=|-2| d x d y=2 d x d y \Rightarrow d x d y=\frac{1}{2} d u d v
$$

Remarks:

(a) This number (or its absolute value) is called the Jacobian, a tribute to Taylor Lautner in Twilight ${ }^{11}$

[^0]
(b) Think of $\frac{d u d v}{d x d y}$ as differentiating the hell out of everything: Differentiate all the functions u and v with respect to all the variables x and y
(c) Reminder:
\[

\left|$$
\begin{array}{ll}
a & b \\
c & d
\end{array}
$$\right|=a d-b c
\]

(d) We use the determinant because we ultimately want a number, not a matrix

(4) Integrate:

$$
\begin{aligned}
\iint_{D} \sin \left(\frac{y-x}{y+x}\right) d x d y & =\iint_{D^{\prime}} \sin \left(\frac{u}{v}\right) \frac{1}{2} d u d v \\
& =\frac{1}{2} \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{u}{v}\right) d u d v \text { Much easier to integrate } \\
& =\cdots \\
& =0
\end{aligned}
$$

Note: Sometimes the change of variables is in the region D instead of the function:

Example:

$$
\iint_{D} x y d x d y
$$

D is the region between $x y=1, x y=2, x y^{2}=3, x y^{2}=5$
(1) $u=x y, v=x y^{2}$
(2) Find D^{\prime}

Note: You don't even need to know what D looks like!

$$
\begin{array}{r}
1 \leq x y \leq 2 \Rightarrow 1 \leq u \leq 2 \\
3 \leq x y^{2} \leq 5 \Rightarrow 3 \leq v \leq 5
\end{array}
$$

(3) $d u d v=\left|\frac{d u d v}{d x d y}\right| d x d y, u=x y, v=x y^{2}$

$$
\frac{d u d v}{d x d y}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
y & x \\
y^{2} & 2 x y
\end{array}\right|=y(2 x y)-x y^{2}=2 x y^{2}-x y^{2}=x y^{2}
$$

$$
d u d v=\left|x y^{2}\right| d x d y=x y^{2} d x d y=v d x d y \Rightarrow d x d y=\frac{1}{v} d u d v
$$

(4)

$$
\begin{aligned}
\iint_{D} x y d x d y & =\iint_{D^{\prime}} u \frac{1}{v} d u d v \\
& =\int_{3}^{5} \int_{1}^{2} \frac{u}{v} d u d v \\
& =\cdots \\
& =\frac{3}{2} \ln \left(\frac{5}{3}\right)
\end{aligned}
$$

3. AS EASY AS $\frac{4}{3} \pi a b c$

Example: Calculate the volume of the ellipsoid (here $a, b, c>0$)

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2} \leq 1
$$

(1) $u=\frac{x}{a}, v=\frac{y}{b}, w=\frac{z}{c}$
(2) Find E^{\prime} :
$\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2} \leq 1 \Rightarrow u^{2}+v^{2}+w^{2} \leq 1$ Ball of radius 1

(3)

$$
\begin{gathered}
d u d v d w=\left|\frac{d u d v d w}{d x d y d z}\right| d x d y d z\left(u=\frac{x}{a}, v=\frac{y}{b}, w=\frac{z}{c}\right) \\
\frac{d u d v d w}{d x d y d z}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right|=\left|\begin{array}{ccc}
\frac{1}{a} & 0 & 0 \\
0 & \frac{1}{b} & 0 \\
0 & 0 & \frac{1}{c}
\end{array}\right|=\frac{1}{a b c}
\end{gathered}
$$

$d u d v d w=\left|\frac{1}{a b c}\right| d x d y d z=\frac{1}{a b c} d x d y d z \Rightarrow d x d y d z=a b c d u d v d w$
(4)

$$
\begin{aligned}
\operatorname{Vol}(E) & =\iiint_{E} 1 d x d y d z \\
& =\iiint_{E^{\prime}} 1 a b c d u d v d w \\
& =a b c \iiint_{E^{\prime}} d u d v d w \\
& =a b c \operatorname{Vol}\left(E^{\prime}\right) \\
& =a b c \frac{4}{3} \pi 1^{3} \quad\left(E^{\prime} \text { is a ball of radius } 1\right) \\
& =\frac{4}{3} \pi a b c
\end{aligned}
$$

4. Optional Appendix: Why this works

Fact from Math 3A: If D and D^{\prime} are regions and A is a matrix ($=$ linear transformation) between them, then:

$$
\operatorname{Area}\left(D^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Area}(D)
$$

Now suppose that D is a small rectangle with sides $d x$ and $d y$. Then $A=\left[\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right]$ transforms D into D^{\prime}, which is an object with sides $d u$ and $d v$:

On the one hand, the area of D^{\prime} is approximately $d u d v$, but on the other hand, by the formula above:

$$
\begin{gathered}
\operatorname{Area}\left(D^{\prime}\right)=|\operatorname{det} A| \operatorname{Area}(D) \\
d u d v=\left|\operatorname{det}\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]\right| d x d y \\
d u d v=\left|\frac{d u d v}{d x d y}\right| d x d y
\end{gathered}
$$

Finally, multiply both sides of the above by $f(u, v)=f(x, y)$ and integrate to get:

$$
\iint_{D^{\prime}} f(u, v) d u d v=\iint_{D} f(x, y)\left|\frac{d u d v}{d x d y}\right| d x d y
$$

[^0]: ${ }^{1}$ Or maybe it's because of the mathematician Jacobi, I don't remember © ${ }^{(5)}$

