LECTURE 9: VECTOR FIELDS

Welcome to the final chapter of your final calculus course! Like all final battles, this chapter is unbelievably hard, but also unbelievably exciting!

Today: A very gentle introduction to vector fields, just to show you how awesome they are!

1. Definition and Examples

Definition: A vector field F is a function that associates to each point (x, y) a vector $F(x, y)$.

Really abstract definition, but a picture says 1000 words:
Example 1: Sketch $F(x, y)=\langle x, y\rangle$

$$
F(1,1)=\langle 1,1\rangle, F(3,1)=\langle 3,1\rangle, F(2,2)=\langle 2,2\rangle, F(-3,1)=\langle-3,1\rangle
$$

In the end, you get a bunch a vectors (one for each point), and that's precisely what a vector field is, just a collection of vectors!

Many applications

- Force Field
- Velocity Field
- Gravitational Field
- Electrostatic Field
- Emotional Attraction?
(Whatever you like, there's probably a vector field for that)

Example 2: Sketch $F(x, y)=\langle-y, x\rangle$

$$
F(1,0)=\langle-0,1\rangle=\langle 0,1\rangle, F(0,1)=\langle-1,0\rangle, F(-1,0)=\langle 0,-1\rangle, F(0,-1)=\langle 1,0\rangle
$$

Note: Indeed, we have

$$
F(x, y) \cdot\langle x, y\rangle=\langle-y, x\rangle \cdot\langle x, y\rangle=-y x+x y=0
$$

So $F(x, y) \perp\langle x, y\rangle$

Alternate notation:

$$
F(x, y)=\langle-y, x\rangle=-y \mathbf{i}+x \mathbf{j}
$$

Where $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$
Example 3: Draw:

$$
F(x, y)=\left(-\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \mathbf{i}+\left(-\frac{y}{\sqrt{x^{2}+y^{2}}}\right) \mathbf{j}=\left\langle-\frac{x}{\sqrt{x^{2}+y^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle
$$

Notice:
(1) $F(x, y)=\left(-\frac{1}{\sqrt{x^{2}+y^{2}}}\right)\langle x, y\rangle$, hence it points the opposite direction from $\langle x, y\rangle$

$$
|F(x, y)|=\sqrt{\left(-\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(-\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}}=\sqrt{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}}=\sqrt{1}=1
$$

Hence $F(x, y)$ has length 1

Kind of like gravity/black hole!
Example 4: $F(x, y, z)=\langle 0, y, 0\rangle$ (independent of x and z, and proportional to $\langle 0,1,0\rangle$)

Point: Everything you learn in 2 dimensions can be generalized to 3 dimensions and beyond!

2. Gradient Fields

It turns out that there is an easy way of generating lots of nice vector fields, called gradient fields.

Definition: If $f(x, y)$ is a function, then

$$
F=\nabla f=\left\langle f_{x}, f_{y}\right\rangle
$$

is called the gradient field of f.
Example: The gradient field of $f(x, y)=x^{2} y-y^{3}$ is:

$$
F=\nabla f=\left\langle\left(x^{2} y-y^{3}\right)_{x},\left(x^{2} y-y^{3}\right)_{y}\right\rangle=\left\langle 2 x y, x^{2}-3 y^{2}\right\rangle
$$

Notice that F is indeed a vector field! Nice vector field associated to f. BIG QUESTION: Are all vector fields F gradient fields? (that is of the form ∇f for some f ?)

Answer:

Example: (see 16.3) $F(x, y)=\langle-y, x\rangle$ (rotation field), F cannot be written as ∇f for any f.

But IF F is a gradient field, we call this nice conservative
Definition: F is conservative if $F=\nabla f$ for some f
Note: This sort of says F has an antiderivative ${ }^{1}$
Example: $F(x, y)=\left\langle 2 x y, x^{2}-3 y^{2}\right\rangle$ is conservative because $F=\nabla f$ for $f(x, y)=x^{2} y-y^{3}$

Example:

$$
F(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle
$$

is conservative, because if $f(x, y)=\sqrt{x^{2}+y^{2}}$, then:

[^0]\[

$$
\begin{aligned}
\nabla f & =\left\langle f_{x}, f_{y}\right\rangle \\
& =\left\langle\left(\sqrt{x^{2}+y^{2}}\right)_{x},\left(\sqrt{x^{2}+y^{2}}\right)_{y}\right\rangle \\
& =\left\langle\frac{2 x}{2 \sqrt{x^{2}+y^{2}}}, \frac{2 y}{2 \sqrt{x^{2}+y^{2}}}\right\rangle \\
& =\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle \\
& =F \quad \checkmark
\end{aligned}
$$
\]

GOALS OF THIS CHAPTER:

(1) What makes conservative vector fields so nice?
(2) How to determine F is conservative or not

3. Pretty Pictures

Check out this Reddit post for pretty examples of vector fields: Pretty Pictures

[^0]: ${ }^{1}$ Conservative because of conservation of energy, not because of political preferences ©

