Math 2E - Suggested Homework 9

Peyam Tabrizian

Thursday, March 5, 2020

Reading: Sections 16.5 (only the part about divergence) and 16.9. In Section 16.5 , all we need for now is the definition of divergence, so you just need to know how to do Example 4. In section 16.9, ignore Example 3 and the discussion following it.

Important: Lecture on Friday, February 28 is cancelled. I will give you info about the make-up lecture soon. In any case, it will not affect this homework and/or quiz at all.

- Section 16.5: 1(b), 4(b), 7(b), 22, 25, 35 (Use $f=1$), AP1
- Section 16.9: 5, 7, 8, 11, 12, 17, 18, 25, 29 (use 16.5.25), AP2, AP3, AP4

Note: Before tackling AP2 - AP4, I recommend looking over the notes for Lecture 22 (The Divergence Theorem II), which will be available sometime before Monday, March 2.

Additional Problem 1: Show that any function $f(x, y, z)$ can be written in the form $f=\operatorname{div}(\mathbf{F})$ for some \mathbf{F} (So there's no analog of conservative vector fields for div since any function is of this form)

Hint: Let $\mathbf{F}=\left\langle\int_{0}^{x} f(s, y, z) d s, 0,0\right\rangle$
Additional Problem 2: Suppose $f=f(x, y, z, t)$ satisfies the heat equation $f_{t}=$ Δf in E (here $\Delta f=f_{x x}+f_{y y}+f_{z z}$) and $\nabla f \cdot \mathbf{n}=0$ on S. Define the mass of f at time t to be

$$
M(t)=\iiint_{E} f(x, y, z, t) d x d y d z
$$

Show that $M^{\prime}(t)=0$ (so the mass of f is constant in time)
The next two problems deal with the formula

$$
\operatorname{Vol}(E)=\iint_{S} \mathbf{F} \cdot d \mathbf{S}, \text { where } \mathbf{F}=\frac{1}{3}\langle x, y, z\rangle
$$

Additional Problem 3: Let E be the ball centered at $(0,0,0)$ of radius R. Using the formula above and the fact that the volume of E is $\frac{4}{3} \pi R^{3}$, show that the surface area of a sphere centered at $(0,0,0)$ and radius R is $4 \pi R^{2}$.

Hint: Use $\mathbf{F} \cdot d \mathbf{S}=\mathbf{F} \cdot \mathbf{n} d S$ and the fact that for the sphere S, we have $\mathbf{n}=$ $\frac{1}{R}\langle x, y, z\rangle$

OMG Additional Problem 4: In this problem, we'll show that the surface area of a sphere is the derivative of the volume of the sphere!!! After this problem it shouldn't be surprising that $\left(\frac{4}{3} \pi r^{3}\right)^{\prime}=4 \pi r^{2}$ or $\left(\pi r^{2}\right)^{\prime}=2 \pi r$. (If you're interested in learning more about this, check out: Derivative of Volume is Surface Area)
(a) Let E be the ball centered at $(0,0,0)$ and radius R and let V be its volume. Using $V=\iiint_{E} 1 d x d y d z$ and the change of variables $u=\frac{x}{R}, v=$ $\frac{y}{R}, z=\frac{z}{R}$, show that $V=C R^{3}$, where C is the volume of the ball centered at $(0,0,0)$ and radius 1 .
(b) On the other hand, using the formula before AP3, show that $V=\left(\frac{R}{3}\right) S$, where S is the surface area of the sphere centered at $(0,0,0)$ and radius R.
(c) Use your answers from (a) and (b) to show that $S=3 C R^{2}$, and conclude that $V^{\prime}=S$, so (in three dimensions) the derivative of the volume is the surface area.

