LECTURE 12: FTC FOR LINE INTEGRALS (I)

Welcome to the first of four Fundamental Theorems of Calculus (FTC) in this course: The Fundamental Theorem of Line Integrals!

1. FTC FOR LINE INTEGRALS

Recall: (FTC, Math 2B)

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)=f(\text { end })-f(\text { start })
$$

The multivariable analog of $f^{\prime}(x)$ is $\nabla f(x)$, so we would like to say:

$$
\int_{a}^{b} \nabla f=f(b)-f(a)
$$

But that doesn't really make sense, since ∇f is a vector! If only we could integrate a vector... but wait!

Theorem: FTC for Line Integrals For any curve C :

$$
\int_{C} \nabla f \cdot d r=f(e n d)-f(\text { start })=f(r(b))-f(r(a))
$$

[^0]
(This says: Integral of a derivative is $f(b)-f(a)$)
Example: $f(x, y)=x^{3} y+x y^{3}, C$ be any curve from $(0,0)$ to $(1,1)$

Let

$$
F=\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 3 x^{2} y+y^{3}, x^{3}+3 x y^{2}\right\rangle
$$

Then FTC says:
$\int_{C} F \cdot d r=\int_{C} \nabla f \cdot d r=f(1,1)-f(0,0)=\left[(1)^{3} 1+1(1)^{3}\right]-\left[(0)^{3} 0+0(0)^{3}\right]=2$
So it's easy to integrate ∇f ! In practice though, you do it in reverse:
Example: Let $F(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle, C$ be any curve from $(1,2)$ to $(3,4)$. Find $\int_{C} F \cdot d r$

Can show: $F=\nabla f$, where $f(x, y)=\frac{1}{2} x^{2} y^{2}$ (sort of like an antiderivative)

Then:

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f(e n d)-f(\text { start }) \\
& =f(3,4)-f(1,2) \\
& =\frac{1}{2}(3)^{2}(4)^{2}-\frac{1}{2}(1)^{2}(2)^{2} \\
& =70
\end{aligned}
$$

Take-away: If F is nice/conservative $(F=\nabla f)$, then $\int_{C} F \cdot d r$ is easy to evaluate!
(And this precisely answers the question from 16.1 as to why conservative vector fields are so nice!)

2. Conservative Vector Fields

Problem: How to determine if F is conservative?

It turns out that there is a really nice criterion for that!
WARNING: This trick only works in 2 dimensions! (will find a 3D analog of this in 16.5)
$\underline{2}$ dimensions: Suppose

$$
\begin{gathered}
F=\nabla f \\
\langle P, Q\rangle=\left\langle f_{x}, f_{y}\right\rangle \\
P=f_{x} \quad Q=f_{y}
\end{gathered}
$$

Recall: (Clairaut/Schwarz)

$$
\begin{aligned}
f_{x y} & =f_{y x} \\
\left(f_{x}\right)_{y} & =\left(f_{y}\right)_{x} \\
P_{y} & =Q_{x}
\end{aligned}
$$

Fact: If $F=\langle P, Q\rangle$ is conservative, then $P_{y}=Q_{x}$
Mnemonic: Peyam = Quixotic
Example: $F=\langle-y, x\rangle$ (rotation field), is F conservative?

$$
\begin{gathered}
P=-y, Q=x \\
P_{y}=-1, Q_{x}=1 \\
P_{y} \neq Q_{x}
\end{gathered}
$$

No
So F conservative $\Rightarrow P_{y}=Q_{x}$.
Question: $P_{y}=Q_{x} \Rightarrow F$ conservative? "Yes"
(Yes if the domain of F has no holes, no otherwise)
Important Fact: (if no holes)

$$
F \text { conservative } \Leftrightarrow P_{y}=Q_{x}
$$

Example: Is $F=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle$ conservative?
$P_{y}=(3+2 x y)_{y}=2 x, Q_{x}=\left(x^{2}-3 y^{2}\right)_{x}=2 x, P_{y}=Q_{x}$, so yes.
Note: Intuitively: Conservative means: it doesn't rotate, Not conservative means: it rotates.

Conservative Not Conservative

3. Finding antiderivatives

Suppose F is conservative, how to find an antiderivative of F ?
Example: $F=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle$, find f such that $F=\nabla f$.

1) Check $P_{y}=Q_{x} \checkmark$
2) $F=\nabla f \Rightarrow\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle=\left\langle f_{x}, f_{y}\right\rangle$

Hence

$$
f_{x}(x, y)=3+2 x y \Rightarrow f(x, y)=\int 3+2 x y d x=3 x+x^{2} y+\mathrm{JUNK}
$$

This is saying that f has the terms $3 x$ and $x^{2} y$ in it, with possibly other terms

$$
f_{y}(x, y)=x^{2}-3 y^{2} \Rightarrow f(x, y)=\int x^{2}-3 y^{2} d y=x^{2} y-y^{3}+\mathrm{JUNK}
$$

Now collect all the terms (notice $x^{2} y$ appears twice here, so don't count it twice)
3)

$$
f(x, y)=x^{2} y+3 x-y^{2}
$$

(There might be other possibilities, but we just need one antiderivative)

Example: Find f such that

$$
F(x, y, z)=\left\langle y^{2}, 2 x y+e^{3 z}, 3 y e^{3 z}\right\rangle=\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

1) Check F conservative. See $16.5 \checkmark$
2)

$$
\begin{gathered}
f_{x}(x, y, z)=y^{2} \Rightarrow f(x, y, z)=\int y^{2} d x=x y^{2}+\mathrm{JUNK} \\
f_{y}(x, y, z)=2 x y+e^{3 z} \Rightarrow f(x, y, z)=\int 2 x y+e^{3 z} d y=x y^{2}+y e^{3 z}+\mathrm{JUNK} \\
f_{z}(x, y, z)=3 y e^{3 z} \Rightarrow f(x, y, z)=\int 3 y e^{3 z} d z=3 y \frac{e^{3 z}}{3}=y e^{3 z}+\mathrm{JUNK}
\end{gathered}
$$

3) Hence $f(x, y, z)=x y^{2}+y e^{3 z}$

4. Putting it all together

Video: FTC for Line Integrals
(Will do many more examples next time)
Example: $\int_{C} F \cdot d r, F(x, y)=\left\langle x^{2} y^{3}, x^{3} y^{2}\right\rangle$
C : is the curve:

$$
\left\{\begin{array}{c}
x(t)=\cos (t) \\
y(t)=2 \sin (t) \\
0 \leq t \leq \frac{\pi}{2}
\end{array}\right.
$$

Note: Could do it directly, but it becomes way harder (sometimes even impossible) to integrate

(1) Picture:

(2) Check:

$$
\begin{aligned}
P_{y} & =\left(x^{2} y^{3}\right)_{x}=3 x^{2} y^{2} \\
Q_{x} & =\left(x^{3} y^{2}\right)_{y}=3 x^{2} y^{2}
\end{aligned}
$$

(3)

$$
\begin{gathered}
F=\nabla f \Rightarrow\left\langle x^{2} y^{3}, x^{3} y^{2}\right\rangle=\left\langle f_{x}, f_{y}\right\rangle \\
f_{x}(x, y)=x^{2} y^{3} \Rightarrow f(x, y)=\int x^{2} y^{3} d x=\frac{1}{3} x^{3} y^{3}+\mathrm{JUNK} \\
f_{y}(x, y)=x^{3} y^{2} \Rightarrow f(x, y)=\int x^{3} y^{2} d y=\frac{1}{3} x^{3} y^{3}+\mathrm{JUNK} \\
f(x, y)=\frac{1}{3} x^{3} y^{3}
\end{gathered}
$$

(4)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f(e n d)-f(\text { start }) \\
& =f(0,2)-f(1,0) \\
& =\frac{1}{3}(0)^{3}(2)^{3}-\frac{1}{3}(1)^{3}(0)^{3} \\
& =0
\end{aligned}
$$

5. Appendix: Proof of FTC

Consider

$$
\int_{a}^{b} \frac{d}{d t} f(r(t)) d t
$$

On the one hand, this equals

$$
\int_{a}^{b} \frac{d}{d t} f(r(t)) d t=f(r(b))-f(r(a))
$$

On the other hand, by the Chen Lu (Chain Rule):

$$
\begin{aligned}
\frac{d}{d t} f(r(t)) & =\frac{d}{d t} f(x(t), y(t)) \\
& =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \\
& =\left(f_{x}\right)\left(x^{\prime}(t)\right)+\left(f_{y}\right)\left(y^{\prime}(t)\right) \\
& =\left\langle f_{x}, f_{y}\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \\
& =\nabla f(x(t), y(t)) \cdot r^{\prime}(t) \\
& =\nabla f(r(t)) \cdot r^{\prime}(t)
\end{aligned}
$$

Therefore:

$$
\int_{a}^{b} \frac{d}{d t} f(r(t)) d t=\int_{a}^{b} \nabla f(r(t)) \cdot r^{\prime}(t)=\int_{C} \nabla f \cdot d r
$$

Combining the two, we get:

$$
\int_{C} \nabla f \cdot d r=\int_{a}^{b} \frac{d}{d t} f(r(t)) d t=f(r(b))-f(r(a))
$$

[^0]: Date: Monday, February 3, 2020.

