LECTURE 12: FTC FOR LINE INTEGRALS (I)

Welcome to the first of four Fundamental Theorems of Calculus (FTC) in this course: The Fundamental Theorem of Line Integrals!

1. FTC FOR LINE INTEGRALS

Recall: (FTC, Math 2B)

$$\int_{a}^{b} f'(x)dx = f(b) - f(a) = f(end) - f(start)$$

The multivariable analog of f'(x) is $\nabla f(x)$, so we would like to say:

$$\int_{a}^{b} \nabla f = f(b) - f(a)$$

But that doesn't really make sense, since ∇f is a vector! If only we could integrate a vector... but wait!

Theorem: FTC for Line Integrals For any curve C:

$$\int_{C} \nabla f \cdot dr = f(end) - f(start) = f(r(b)) - f(r(a))$$

Date: Monday, February 3, 2020.

(This says: Integral of a derivative is f(b) - f(a))

Example: $f(x,y) = x^3y + xy^3$, C be any curve from (0,0) to (1,1)

Let

$$F = \nabla f = \langle f_x, f_y \rangle = \langle 3x^2y + y^3, x^3 + 3xy^2 \rangle$$

Then FTC says:

$$\int_C F \cdot dr = \int_C \nabla f \cdot dr = f(1,1) - f(0,0) = \left[(1)^3 1 + 1(1)^3 \right] - \left[(0)^3 0 + 0(0)^3 \right] = 2$$

So it's easy to integrate $\nabla f!$ In practice though, you do it in reverse:

Example: Let $F(x,y) = \langle xy^2, x^2y \rangle$, C be any curve from (1,2) to (3,4). Find $\int_C F \cdot dr$

Can show: $F = \nabla f$, where $f(x,y) = \frac{1}{2}x^2y^2$ (sort of like an antiderivative)

Then:

$$\int_{C} F \cdot dr = \int_{C} \nabla f \cdot dr$$

$$= f(end) - f(start)$$

$$= f(3, 4) - f(1, 2)$$

$$= \frac{1}{2}(3)^{2}(4)^{2} - \frac{1}{2}(1)^{2}(2)^{2}$$

$$= \frac{1}{2}(3)^{2}(4)^{2} - \frac{1}{2}(1)^{2}(2)^{2}$$

Take-away: If F is nice/conservative $(F = \nabla f)$, then $\int_C F \cdot dr$ is easy to evaluate!

(And this precisely answers the question from 16.1 as to why conservative vector fields are so nice!)

2. Conservative Vector Fields

Problem: How to determine if F is conservative?

It turns out that there is a really nice criterion for that!

WARNING: This trick only works in 2 dimensions! (will find a 3D analog of this in 16.5)

2 dimensions: Suppose

$$F = \nabla f$$

$$\langle P, Q \rangle = \langle f_x, f_y \rangle$$

$$P = f_x \ Q = f_y$$

Recall: (Clairaut/Schwarz)

$$f_{xy} = f_{yx}$$
$$(f_x)_y = (f_y)_x$$
$$P_y = Q_x$$

Fact: If $F = \langle P, Q \rangle$ is conservative, then $P_y = Q_x$

Mnemonic: Peyam = Quixotic

Example: $F = \langle -y, x \rangle$ (rotation field), is F conservative?

$$P = -y, \ Q = x$$

$$P_y = -1, \ Q_x = 1$$

$$P_y \neq Q_x$$
No

So F conservative $\Rightarrow P_y = Q_x$.

Question: $P_y = Q_x \Rightarrow F$ conservative? "Yes"

(Yes if the domain of F has no holes, no otherwise)

Important Fact: (if no holes)

F conservative $\Leftrightarrow P_y = Q_x$

Example: Is $F = \langle 3 + 2xy, x^2 - 3y^2 \rangle$ conservative?

$$P_y = (3 + 2xy)_y = 2x$$
, $Q_x = (x^2 - 3y^2)_x = 2x$, $P_y = Q_x$, so yes.

Note: Intuitively: Conservative means: it doesn't rotate, Not conservative means: it rotates.

3. FINDING ANTIDERIVATIVES

Suppose F is conservative, how to find an antiderivative of F?

Example:
$$F = \langle 3 + 2xy, x^2 - 3y^2 \rangle$$
, find f such that $F = \nabla f$.

1) Check $P_y = Q_x \checkmark$

2)
$$F = \nabla f \Rightarrow \langle 3 + 2xy, x^2 - 3y^2 \rangle = \langle f_x, f_y \rangle$$

Hence

$$f_x(x,y) = 3 + 2xy \Rightarrow f(x,y) = \int 3 + 2xy \, dx = 3x + x^2y + \text{ JUNK}$$

This is saying that f has the terms 3x and x^2y in it, with possibly other terms

$$f_y(x,y) = x^2 - 3y^2 \Rightarrow f(x,y) = \int x^2 - 3y^2 dy = x^2y - y^3 + \text{ JUNK}$$

Now collect all the terms (notice x^2y appears twice here, so don't count it twice)

3)

$$f(x,y) = x^2y + 3x - y^2$$

(There might be other possibilities, but we just need *one* antiderivative)

Example: Find f such that

$$F(x, y, z) = \langle y^2, 2xy + e^{3z}, 3ye^{3z} \rangle = \nabla f = \langle f_x, f_y, f_z \rangle$$

1) Check F conservative. See $16.5 \checkmark$

2)
$$f_x(x, y, z) = y^2 \Rightarrow f(x, y, z) = \int y^2 dx = xy^2 + \text{ JUNK}$$

$$f_y(x, y, z) = 2xy + e^{3z} \Rightarrow f(x, y, z) = \int 2xy + e^{3z} dy = xy^2 + ye^{3z} + \text{JUNK}$$

$$f_z(x, y, z) = 3ye^{3z} \Rightarrow f(x, y, z) = \int 3ye^{3z} dz = 3y\frac{e^{3z}}{3} = ye^{3z} + \text{JUNK}$$

3) Hence $f(x, y, z) = xy^2 + ye^{3z}$

4. Putting it all together

Video: FTC for Line Integrals

(Will do many more examples next time)

Example:
$$\int_C F \cdot dr$$
, $F(x,y) = \langle x^2y^3, x^3y^2 \rangle$

C: is the curve:

$$\begin{cases} x(t) = \cos(t) \\ y(t) = 2\sin(t) \\ 0 \le t \le \frac{\pi}{2} \end{cases}$$

Note: Could do it directly, but it becomes way harder (sometimes even impossible) to integrate

(1) Picture:

(2) **Check:**

$$P_y = (x^2y^3)_x = 3x^2y^2$$

 $Q_x = (x^3y^2)_y = 3x^2y^2$

(3)
$$F = \nabla f \Rightarrow \langle x^2 y^3, x^3 y^2 \rangle = \langle f_x, f_y \rangle$$

$$f_x(x,y) = x^2 y^3 \Rightarrow f(x,y) = \int x^2 y^3 dx = \frac{1}{3} x^3 y^3 + \text{ JUNK}$$

$$f_y(x,y) = x^3 y^2 \Rightarrow f(x,y) = \int x^3 y^2 dy = \frac{1}{3} x^3 y^3 + \text{ JUNK}$$

$$f(x,y) = \frac{1}{3}x^3y^3$$

(4)

$$\int_{C} F \cdot dr = \int_{C} \nabla f \cdot dr$$

$$= f(end) - f(start)$$

$$= f(0, 2) - f(1, 0)$$

$$= \frac{1}{3}(0)^{3}(2)^{3} - \frac{1}{3}(1)^{3}(0)^{3}$$

$$= 0$$

5. Appendix: Proof of FTC

Consider

$$\int_{a}^{b} \frac{d}{dt} f(r(t)) dt$$

On the one hand, this equals

$$\int_{a}^{b} \frac{\mathbf{d}}{\mathbf{d}t} f(r(t)) \mathbf{d}t = f(r(b)) - f(r(a))$$

On the other hand, by the Chen Lu (Chain Rule):

$$\frac{d}{dt}f(r(t)) = \frac{d}{dt}f(x(t), y(t))$$

$$= \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}$$

$$= (f_x)(x'(t)) + (f_y)(y'(t))$$

$$= \langle f_x, f_y \rangle \cdot \langle x'(t), y'(t) \rangle$$

$$= \nabla f(x(t), y(t)) \cdot r'(t)$$

$$= \nabla f(r(t)) \cdot r'(t)$$

Therefore:

$$\int_{a}^{b} \frac{d}{dt} f(r(t))dt = \int_{a}^{b} \nabla f(r(t)) \cdot r'(t) = \int_{C} \nabla f \cdot dr$$

Combining the two, we get:

$$\int_{C} \nabla f \cdot dr = \int_{a}^{b} \frac{d}{dt} f(r(t)) dt = f(r(b)) - f(r(a))$$