LECTURE 13: FTC FOR LINE INTEGRALS (II)

Today: More practice with the FTC for line integrals and some interesting geometric insight

Recall: FTC for Line Integrals:

$$
\int_{C} \nabla f \cdot d r=f(e n d)-f(\text { start })
$$

1. Examples

Video: FTC Example
Example: $\int_{C} F \cdot d r$

$$
F(x, y)=\underbrace{\langle\sin (y), x \cos (y)-\sin (y)\rangle}_{\langle P, Q\rangle}
$$

C : line from $(2,0)$ to $(1, \pi)$
(1) Picture:

Date: Monday, February 3, 2020.

(2) Conservative:

$$
\begin{aligned}
P_{y} & =(\sin (y))_{y}=\cos (y) \\
Q_{x} & =(x \cos (y)-\sin (y))_{x}=\cos (y) \\
P_{y} & =Q_{x}
\end{aligned}
$$

(3) Antiderivative:

$$
\begin{gathered}
F=\nabla f \Rightarrow\langle\sin (y), x \cos (y)-\sin (y)\rangle=\left\langle f_{x}, f_{y}\right\rangle \\
f_{x}=\sin (y) \Rightarrow f(x, y)=\int \sin (y) d x=x \sin (y)+\text { JUNK } \\
f_{y}=x \cos (y)-\sin (y) \\
\Rightarrow f(x, y)=\int x \cos (y)-\sin (y) d y=x \sin (y)+\cos (y)+J U N K
\end{gathered}
$$

$$
f(x, y)=x \sin (y)+\cos (y)
$$

(4)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f(1, \pi)-f(2,0) \\
& =1 \sin (\pi)+\cos (\pi)-2 \sin (0)-\cos (0) \\
& =-1-1 \\
& =-2
\end{aligned}
$$

Video: FTC 3 Dimensions
Example: $\int_{C} F \cdot d r$
$F(x, y, z)=\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right\rangle$
C :

$$
\left\{\begin{array}{c}
x(t)=t \\
y(t)=t^{2} \\
z(t)=t^{3} \\
1 \leq t \leq 2
\end{array}\right.
$$

(1) Picture:

(2) Conservative: See Section 16.5
(3) Antiderivative:

$$
\begin{gathered}
F=\nabla f \Rightarrow\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
f_{x}=y z e^{x z} \Rightarrow f(x, y, z)=\int y z e^{x z} d x=y z \frac{e^{x z}}{z}+\mathrm{JUNK}=y e^{x z}+\mathrm{JUNK} \\
f_{y}=e^{x z} \Rightarrow f(x, y, z)=\int e^{x z} d y=y e^{x z}+\mathrm{JUNK} \\
f_{z}=x y e^{x z} \Rightarrow f(x, y, z)=\int x y e^{x z} d z=x y \frac{e^{x z}}{x}+\mathrm{JUNK}=y e^{x z}+\mathrm{JUNK} \\
f(x, y, z)=y e^{x z}
\end{gathered}
$$

(4)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f(2,4,8)-f(1,1,1) \\
& =4 e^{(2)(8)}-1 e^{(1)(1)} \\
& =4 e^{16}-e
\end{aligned}
$$

2. Path (in)-Dependence

Video: Path Independence
Recall: In general, $\int_{C} F \cdot d r$ depends on the path C

Start

$\int_{C} F \cdot d r \neq \int_{C^{\prime}} F \cdot d r$, even if C and C^{\prime} have the same start/endpoints.

Question: When is $\int_{C} F \cdot d r$ independent of the path?
To figure this out, we'll need a quick definition:
Definition: C is closed if Start $=$ End

The following is an easy test for path independence:
Neat Fact:
$\int_{C} F \cdot d r$ is independent of path $\Leftrightarrow \int_{C} F \cdot d r=0$ for every closed C
Nonexample:

$\int_{C} F \cdot d r \neq 0$, so not independent of path!
Note: The proof of the neat fact is interesting: For \Rightarrow, you consider the constant path, and for \Leftarrow, you loop around. See the end of the notes for a detailed proof

There's an even easier and more important test:
Important Fact:

$$
\int_{C} F \cdot d r \text { is independent of path } \Leftrightarrow F \text { is conservative }(F=\nabla f)
$$

Which explains YET AGAIN why conservative vector fields are important!

Why?

(\Rightarrow) Skip (but it explicitly constructs f)
(\Leftarrow) Suppose $F=\nabla f$ and assume C is closed

Then:

$$
\int_{C} F \cdot d r=\int_{C} \nabla f \cdot d r=f(\text { end })-f(\text { start })=0(\text { since } C \text { is closed })
$$

Therefore $\int_{C} F \cdot d r=0$ is closed for all C, and hence we're done by the Neat Fact.

Remark: For closed $C, \int_{C} F \cdot d r$ is sometimes called the circulation of F around C and measures how many times F loops around C. For conservative $F, \int_{C} F \cdot d r=0$, so conservative F are irrotational.

Conservative

Not Conservative

Summary: Conservative vector fields are nice because:
(1) $F=\nabla f$ (they have antiderivatives)
(2) $\int_{C} F \cdot d r$ is easy to calculate (by FTC)
(3) $\int_{C} F \cdot d r$ is independent of path
(4) F is irrotational

3. Pitfalls

Video: FTC Pitfalls

Example: $\int_{C} F \cdot d r, F(x, y)=\langle 2 y, 3 x\rangle, C$: Circle centered at $(0,0)$ of radius 2 (counterclockwise)

(1) Picture:

(2) Conservative:

$$
\begin{aligned}
& P_{y}=2 \\
& Q_{x}=3 \\
& P_{y} \neq Q_{x} \\
& \text { NO }
\end{aligned}
$$

RUH-OH!!! Well, in that case you have to get your hands dirty and calculate the integral.
(3) Parametrize:

$$
\left\{\begin{array}{r}
x(t)=2 \cos (t) \\
y(t)=2 \sin (t) \\
0 \leq t \leq 2 \pi
\end{array}\right.
$$

(4) Integrate:

$$
\begin{aligned}
\int_{C} F \cdot d r & =\int_{0}^{2 \pi} F(r(t)) \cdot r^{\prime}(t) \\
& =\int_{0}^{2 \pi}\langle 2(2 \sin (t)), 3(2 \cos (t))\rangle \cdot\langle-2 \sin (t), 2 \cos (t)\rangle \\
& =\int_{0}^{2 \pi}-8 \sin ^{2}(t)+12 \cos ^{2}(t) d t \\
& =\cdots \\
& =4 \pi
\end{aligned}
$$

Notice: $\int_{C} F \cdot d r \neq 0$ (even though C is closed), yet another argument why F is not conservative.

Example: Same, but $F(x, y)=\left\langle 2 x y, x^{2}\right\rangle$

(1) Picture:

(2) Conservative:

$$
\begin{aligned}
P_{y} & =2 x \\
Q_{x} & =2 x \\
P_{y} & =Q_{x}
\end{aligned}
$$

But since C is closed, we automatically get $\int_{C} F \cdot d r=0$.

4. Optional Appendix: Proof of Neat Fact

Neat Fact:
$\int_{C} F \cdot d r$ is independent of path $\Leftrightarrow \int_{C} F \cdot d r=0$ for every $\underline{\text { closed } C}$
(\Rightarrow) Suppose the integral is independent of path and let C be any closed curve. Pick any point $\left(x_{0}, y_{0}\right)$ on C and let C^{\prime} be the point $\left(x_{0}, y_{0}\right)$ parametrized by $r(t)=\left\langle x_{0}, y_{0}\right\rangle$.

Then $\int_{C^{\prime}} F \cdot d r=0\left(\right.$ since $r(t)=\left\langle x_{0}, y_{0}\right\rangle$ and $\left.r^{\prime}(t)=\langle 0,0\rangle\right)$. Since the integral is independent of path, we get

$$
\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r=0
$$

(\Leftarrow) Suppose C and C^{\prime} are two curves with the same start and endpoints, we want to show $\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r$ and let $C^{\prime \prime}$ be C followed by C^{\prime} (but in the opposite direction). So $C^{\prime \prime}$ is the loop formed by C and C^{\prime}

Then, since $C^{\prime \prime}$ is closed, by assumption we get:

$$
\begin{gathered}
\int_{C^{\prime \prime}} F \cdot d r=0 \\
\int_{C} F \cdot d r+\int_{-C^{\prime}} F \cdot d r=0-C^{\prime} \text { is } C^{\prime} \text { but in the other direction } \\
\int_{C} F \cdot d r-\int_{C^{\prime}} F \cdot d r=0 \\
\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r
\end{gathered}
$$

