LECTURE 13: FTC FOR LINE INTEGRALS (II)

Today: More practice with the FTC for line integrals and some interesting geometric insight

Recall: FTC for Line Integrals:

$$\int_{C} \nabla f \cdot dr = f(end) - f(start)$$

1. Examples

Video: FTC Example

Example: $\int_C F \cdot dr$

$$F(x,y) = \underbrace{\langle \sin(y), x \cos(y) - \sin(y) \rangle}_{\langle P, Q \rangle}$$

C: line from (2,0) to $(1,\pi)$

(1) Picture:

Date: Monday, February 3, 2020.

(2) Conservative:

$$P_y = (\sin(y))_y = \cos(y)$$

$$Q_x = (x\cos(y) - \sin(y))_x = \cos(y)$$

$$P_y = Q_x \checkmark$$

(3) Antiderivative:

$$F = \nabla f \Rightarrow \langle \sin(y), x \cos(y) - \sin(y) \rangle = \langle f_x, f_y \rangle$$

$$f_x = \sin(y) \Rightarrow f(x,y) = \int \sin(y) dx = x \sin(y) + \text{ JUNK}$$

$$f_y = x\cos(y) - \sin(y)$$

$$\Rightarrow f(x,y) = \int x\cos(y) - \sin(y)dy = x\sin(y) + \cos(y) + JUNK$$

$$f(x,y) = x\sin(y) + \cos(y)$$

$$\int_C F \cdot dr = \int_C \nabla f \cdot dr$$

$$= f(1, \pi) - f(2, 0)$$

$$= 1\sin(\pi) + \cos(\pi) - 2\sin(0) - \cos(0)$$

$$= -1 - 1$$

$$= -2$$

Video: FTC 3 Dimensions

Example: $\int_C F \cdot dr$

$$F(x, y, z) = \langle yze^{xz}, e^{xz}, xye^{xz} \rangle$$

C:

$$\begin{cases} x(t) = t \\ y(t) = t^2 \\ z(t) = t^3 \\ 1 \le t \le 2 \end{cases}$$

(1) Picture:

- (2) Conservative: See Section 16.5
- (3) Antiderivative:

$$F = \nabla f \Rightarrow \langle yze^{xz}, e^{xz}, xye^{xz} \rangle = \langle f_x, f_y, f_z \rangle$$

$$f_x = yze^{xz} \Rightarrow f(x, y, z) = \int yze^{xz}dx = yz\frac{e^{xz}}{z} + \text{JUNK} = ye^{xz} + \text{JUNK}$$

$$f_y = e^{xz} \Rightarrow f(x, y, z) = \int e^{xz} dy = y e^{xz} + \text{ JUNK}$$

$$f_z = xye^{xz} \Rightarrow f(x, y, z) = \int xye^{xz}dz = xy\frac{e^{xz}}{x} + \text{JUNK} = ye^{xz} + \text{JUNK}$$

$$f(x, y, z) = ye^{xz}$$

(4)
$$\int_C F \cdot dr = \int_C \nabla f \cdot dr$$
$$= f(2, 4, 8) - f(1, 1, 1)$$
$$= 4e^{(2)(8)} - 1e^{(1)(1)}$$
$$= 4e^{16} - e$$

2. Path (in)-dependence

Video: Path Independence

Recall: In general, $\int_C F \cdot dr$ depends on the path C

 $\int_C F \cdot dr \neq \int_{C'} F \cdot dr$, even if C and C' have the same start/endpoints.

Question: When is $\int_C F \cdot dr$ independent of the path?

To figure this out, we'll need a quick definition:

Definition: C is **closed** if Start = End

The following is an easy test for path independence:

Neat Fact:

$$\int_C F \cdot dr \text{ is independent of path } \Leftrightarrow \int_C F \cdot dr = 0 \text{ for every } \underline{\text{closed}} \ C$$

Nonexample:

 $\int_C F \cdot dr \neq 0$, so not independent of path!

Note: The proof of the neat fact is interesting: For \Rightarrow , you consider the constant path, and for \Leftarrow , you loop around. See the end of the notes for a detailed proof

There's an even easier and more important test:

Important Fact:

$$\int_C F \cdot dr \text{ is independent of path } \Leftrightarrow F \text{ is conservative } (F = \nabla f)$$

Which explains YET AGAIN why conservative vector fields are important!

Why?

- (\Rightarrow) Skip (but it explicitly constructs f)
- (\Leftarrow) Suppose $F = \nabla f$ and assume C is closed

Then:

$$\int_{C} F \cdot dr = \int_{C} \nabla f \cdot dr = f(end) - f(start) = 0 \text{ (since } C \text{ is closed)}$$

Therefore $\int_C F \cdot dr = 0$ is closed for all C, and hence we're done by the Neat Fact.

Remark: For closed C, $\int_C F \cdot dr$ is sometimes called the circulation of F around C and measures how many times F loops around C. For conservative F, $\int_C F \cdot dr = 0$, so conservative F are irrotational.

Summary: Conservative vector fields are nice because:

- (1) $F = \nabla f$ (they have antiderivatives)
- (2) $\int_C F \cdot dr$ is easy to calculate (by FTC)
- (3) $\int_C F \cdot dr$ is independent of path
- (4) F is irrotational

3. PITFALLS

Video: FTC Pitfalls

Example: $\int_C F \cdot dr$, $F(x,y) = \langle 2y, 3x \rangle$, C: Circle centered at (0,0) of radius 2 (counterclockwise)

(1) Picture:

(2) Conservative:

$$P_y = 2$$

$$Q_x = 3$$

$$P_y \neq Q_x$$

RUH-OH!!! Well, in that case you have to get your hands dirty and calculate the integral.

(3) Parametrize:

$$\begin{cases} x(t) = 2\cos(t) \\ y(t) = 2\sin(t) \\ 0 \le t \le 2\pi \end{cases}$$

(4) Integrate:

$$\int_C F \cdot dr = \int_0^{2\pi} F(r(t)) \cdot r'(t)$$

$$= \int_0^{2\pi} \langle 2(2\sin(t)), 3(2\cos(t)) \rangle \cdot \langle -2\sin(t), 2\cos(t) \rangle$$

$$= \int_0^{2\pi} -8\sin^2(t) + 12\cos^2(t)dt$$

$$= \cdots$$

$$= 4\pi$$

Notice: $\int_C F \cdot dr \neq 0$ (even though C is closed), yet another argument why F is not conservative.

Example: Same, but $F(x,y) = \langle 2xy, x^2 \rangle$

(1) Picture:

(2) Conservative:

$$P_y = 2x$$

$$Q_x = 2x$$

$$P_y = Q_x \checkmark$$

But since C is closed, we automatically get $\int_C F \cdot dr = 0$.

4. Optional Appendix: Proof of Neat Fact Neat Fact:

$$\int_C F \cdot dr$$
 is independent of path $\Leftrightarrow \int_C F \cdot dr = 0$ for every closed C

(\Rightarrow) Suppose the integral is independent of path and let C be any closed curve. Pick any point (x_0, y_0) on C and let C' be the point (x_0, y_0) parametrized by $r(t) = \langle x_0, y_0 \rangle$.

Then $\int_{C'} F \cdot dr = 0$ (since $r(t) = \langle x_0, y_0 \rangle$ and $r'(t) = \langle 0, 0 \rangle$). Since the integral is independent of path, we get

$$\int_C F \cdot dr = \int_{C'} F \cdot dr = 0$$

 (\Leftarrow) Suppose C and C' are two curves with the same start and endpoints, we want to show $\int_C F \cdot dr = \int_{C'} F \cdot dr$ and let C'' be C followed by C' (but in the opposite direction). So C'' is the loop formed by C and C'

Then, since C'' is closed, by assumption we get:

$$\int_{C''} F \cdot dr = 0$$

$$\int_{C} F \cdot dr + \int_{-C'} F \cdot dr = 0 - C' \text{ is C' but in the other direction}$$

$$\int_{C} F \cdot dr - \int_{C'} F \cdot dr = 0$$

$$\int_{C} F \cdot dr = \int_{C'} F \cdot dr$$