LECTURE 15: GREEN'S THEOREM (I)

Congrats on surviving the first boss, and welcome to the second part of Super Calculus 2E. They say the grass is greener on the other side, but I say that the grass is Green's Theorem-er on the other side, because today is all about Green's Theorem!

1. Motivation

Recall:

$$
\text { FTC: } \int_{C} \nabla f \cdot d r=f(\text { end })-f(\text { start })
$$

Problem: The FTC only works for conservative vector fields ($F=$ $\nabla f)$ Is there an FTC for non-conservative F ? YES

WARNING: Today only works for 2 dimensions (we'll see 3D analogs in the coming weeks)

Motivation:

$$
\text { 2B: } \int F(x) d x=\iint F^{\prime}(x) d x
$$

The 2E analog of this is

$$
2 \mathrm{E}: \int_{C} F \cdot d r=\iint \nabla F d x
$$

[^0]The right-hand-side makes no sense! Need a scalar that says "The derivative of F " It turns out that the answer is Quixotic Peyams:

GREEN'S THEOREM: If C is a closed curve and D the region inside it, and $F=\langle P, Q\rangle$, then

$$
\int_{C} F \cdot d r=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y
$$

The idea is that instead of calculating a hard line integral (left), you calculate an easier double integral.

Mnemonic: QuiXotic PeYams

$$
\text { OR: }\left|\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
P & Q
\end{array}\right|=\frac{\partial}{\partial x} Q-\frac{\partial}{\partial y} P=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}
$$

Note: Green's Theorem because George Green, not because of the color green

2. Examples

Video: Green's Theorem
Again, useful for calculating line integrals.
Example 1: $\int_{C} F \cdot d r$

$$
F(x, y)=\left\langle x^{4}, x y\right\rangle
$$

C : Triangle connecting $(0,0),(1,0),(0,1)$
(1) Picture:

Notice: It's a PAIN to do the line integral directly! Not only is F complicated, but you also need to split the line integral up into 3 pieces, ughhh!!!
(2)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y \\
& =\iint_{D}(x y)_{x}-\left(x^{4}\right)_{y} d x d y \\
& =\iint_{D} y d x d y
\end{aligned}
$$

$$
\begin{array}{r}
0 \leq y \leq 1-x \\
0 \leq x \leq 1
\end{array}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1-x} y d y d x \\
& =\int_{0}^{1}\left[\frac{y^{2}}{2}\right]_{y=0}^{y=1-x} \\
& =\int_{0}^{1} \frac{(1-x)^{2}}{2} d x \\
& =\cdots \\
& =\frac{1}{6}
\end{aligned}
$$

Example 2: $\int_{C} F \cdot d r$

$$
F(x, y)=\left\langle 3 y-e^{\sin (x)}, 7 x+\sqrt{y^{4}+1}\right\rangle
$$

C : Square with vertices $(\pm 1,0),(0, \pm 1)$
(1) Picture:

(2)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{D} \frac{7 x+\sqrt{y^{4}+1}}{\partial x}-\frac{3 y-e^{\sin (x)}}{\partial y} d x d y \\
& =\iint_{D} 7-3 d x d y \\
& =\iint_{D} 4 d x d y \\
& =4 \iint_{D} 1 d x d y \\
& =4 \operatorname{Area}(D) \\
& =4(\sqrt{2})^{2} \\
& =8
\end{aligned}
$$

Example 3: What is F is conservative?

$$
F(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle
$$

C : Circle of Radius 1
(1) Picture:

(2)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y \\
& =\iint_{D}\left(x^{2} y\right)_{x}-\left(x y^{2}\right)_{y} d x d y \\
& =\iint_{D} 2 x y-2 x y d x d y \\
& =\iint_{D} 0 d x d y \\
& =0
\end{aligned}
$$

(So if C is closed and F is conservative, don't even need to use FTC, just use Green's Theorem!)

Remark:

Showed that $F=\langle P, Q\rangle$ conservative $\Rightarrow P_{y}=Q_{x}$ (using Clairaut's Theorem)

Now if $P_{y}=Q_{x}$ (and no holes), then for all closed C,

$$
\int_{C} F \cdot d r=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=0
$$

So F is conservative (by neat fact from last time)
So F conservative $\Leftrightarrow P_{y}=Q_{x}$
3. Some Intuition

$\int_{C} F \cdot d r$ measures the circulation of F around C (think $F=$ wind or water) which you can think of a macroscopic rotation
$\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ measures the rotation of F around a point, which is a microscopic rotation

Green's Theorem says:

$$
\underbrace{\iint \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y}_{\text {Sum of Microscopic Rotations }}=\underbrace{\int_{C} F \cdot d r}_{\text {Macroscopic Rotation }}
$$

Which kind of makes sense! Think of the microscopic rotations as mini-whirlpools (or hurricanes) in a bath-tub C

Green's Theorem says that if you add up all the whirlpools inside the bathtub, you get a gigantic whirlpool/circulation around C
4. One More Example (if time permits)

Example 4: $\int_{C} y^{2} d x+3 x y d y$
Means: $\int_{C} F \cdot d r, F=\left\langle y^{2}, 3 x y\right\rangle$
C : Boundary of the region $1 \leq x^{2}+y^{2} \leq 4$ in the upper-half-plane

(1)
(Strictly speaking, notice that C goes clockwise at some point, but don't worry about it)
(2)

$$
\begin{aligned}
& \int_{C} y^{2} d x+3 x y d y \\
= & \iint_{D} \frac{\partial(3 x y)}{\partial x}-\frac{\partial\left(y^{2}\right)}{\partial y} d x d y \\
= & \iint_{D} 3 y-2 y d x d y \\
= & \iint_{D} y d x d y
\end{aligned}
$$

$$
\begin{aligned}
& 1 \leq r \leq 2 \\
& 0 \leq \theta \leq \pi \\
& =\int_{0}^{\pi} \int_{1}^{2} r \sin (\theta) r d r d \theta \\
& =\left(\int_{1}^{2} r^{2} d r\right)\left(\int_{0}^{\pi} \sin (\theta) d \theta\right) \\
& =\left(\frac{7}{3}\right)(2) \\
& =\frac{14}{3}
\end{aligned}
$$

[^0]: Date: Monday, February 10, 2020.

