## LECTURE 16: GREEN'S THEOREM (II)

Welcome to the second part of our Green's Theorem extravaganza! Today is all about applications of Green's Theorem.


## Green's Theorem

$$
\int_{C} F \cdot d r=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y
$$

Last time, we saw that Green's Theorem helps us simplify line integrals. Now you may ask: Is the opposite true? Could we use Green's theorem to simplify double integrals? Not really except for one special case:

Date: Wednesday, February 12, 2020.

## 1. Area 51

## Recall

$$
\operatorname{Area}(D)=\iint_{D} 1 d x d y
$$

So IF $F=\langle P, Q\rangle$ is such that $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$, then:

$$
\begin{aligned}
\int_{C} F \cdot d r & \stackrel{G}{=} \iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y \\
& =\iint_{D} 1 d x d y \\
& =\text { Area }(D)
\end{aligned}
$$

Many choices for $P$ and $Q$ such that $Q_{x}-P_{y}=1$
(Examples: $P=0, Q=x$ or $P=-y, Q=0$ )
"Best" choice: $P=-\frac{y}{2}, Q=\frac{x}{2}$, which gives:

$$
F=\langle P, Q\rangle=\left\langle-\frac{y}{2}, \frac{x}{2}\right\rangle=\frac{1}{2}\langle-y, x\rangle \rightarrow \frac{1}{2}(-y d x+x d y)
$$

## FACT (Memorize)

$$
\text { Area }(D)=\frac{1}{2} \int_{C} x d y-y d x
$$

Mnemonic: $\frac{1}{2}\left|\begin{array}{cc}x & y \\ d x & d y\end{array}\right|=\frac{1}{2}(x d y-y d x)$

Video: Area of Ellipse

## Example

Find the area enclosed by the ellipse

$$
\frac{x^{2}}{4^{2}}+\frac{y^{2}}{2^{2}}=1
$$

(1) Picture:

(2)

$$
\left\{\begin{array}{r}
x(t)=4 \cos (t) \\
y(t)=2 \sin (t) \\
0 \leq t \leq 2 \pi
\end{array}\right.
$$

(3)

$$
\text { Area } \begin{aligned}
(D) & =\frac{1}{2} \int_{C} x \frac{d y}{d t}-y \frac{d x}{d t} d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} x(t) y^{\prime}(t)-y(t) x^{\prime}(t) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} 4 \cos (t) 2 \cos (t)-2 \sin (t)(-4 \sin (t)) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} \underbrace{8 \cos ^{2}(t)+8 \sin ^{2}(t)}_{8} d t \\
& =\left(\frac{1}{2}\right)(8)(2 \pi) \\
& =8 \pi
\end{aligned}
$$

OMG, look how effortless this was!

## 3. OMGGG Example

Video: Area of a Polygon
You might say "OMG Peyam, there's no way this could be even more exciting!!!" Oh, just wait for it! ©

## Example

(a) Prep: Find $\int_{C} x d y-y d x, C$ : Line connecting $(a, b)$ to $(c, d)$
(1) Picture:

(2) Parametrize:

$$
\left\{\begin{aligned}
x(t)= & (1-t) a+t c=a+t(c-a) \\
y(t)= & (1-t) b+t d=c+t(d-b) \\
& 0 \leq t \leq 1
\end{aligned}\right.
$$

$$
\begin{align*}
\int_{C} x d y-y d x & =\int_{0}^{1} x(t) y^{\prime}(t)-y(t) x^{\prime}(t) d t  \tag{3}\\
& =\int_{0}^{1}(a+t(c-a))(d-b)-(b+t(d-b))(c-a) d t \\
& =\int_{0}^{1} a(d-b)+\underline{t(c-a)(d-b)}-b(c-a)-t(d-b)(c-a) d t \\
& =\int_{0}^{1} a d-\alpha \zeta-b c+a \zeta d t \\
& =a d-b c \\
& =\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
\end{align*}
$$

Therefore:

$$
\int_{C} x d y-y d x=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

## OMG Part

(b) Find the area of the pentagon with vertices $(3,-1),(4,2),(1,6),(-3,4),(-2,-1)$
(In fact, any polygon works)
(1)

(2)

Area $(D)=\frac{1}{2} \int_{C} x d y-y d x$

$$
\begin{aligned}
& =\frac{1}{2}\left(\int_{C_{1}} x d y-y d x+\int_{C_{2}} x d y-y d x+\cdots+\int_{C_{5}} x d y-y d x\right) \\
& =\frac{1}{2}\left(\left|\begin{array}{cc}
3 & -1 \\
4 & 2
\end{array}\right|+\left|\begin{array}{ll}
4 & 2 \\
1 & 6
\end{array}\right|+\left|\begin{array}{cc}
1 & 6 \\
-3 & 4
\end{array}\right|+\left|\begin{array}{cc}
-3 & 4 \\
-2 & -1
\end{array}\right|+\left|\begin{array}{cc}
-2 & -1 \\
3 & -1
\end{array}\right|\right) \\
& =\frac{1}{2}(10+22+22+11+5) \\
& =35 \text { BOOM!!! }
\end{aligned}
$$

Why this works?


A pentagon (or any polygon) is the sum of triangles, which are halfparallelograms, so

$$
\begin{aligned}
\text { Area(Pentagon }) & =\text { Sum of Areas of Triangles } \\
& =\frac{1}{2}(\text { Sum of areas of Parallelograms }) \\
& =\frac{1}{2}\left(\text { Sum of }\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|\right)(\text { from Math 3A) })
\end{aligned}
$$

Note: There is a 3 dimensional analog of this, you can check it out here: Volume of Polyhedron (but it requires a 3D version of Green's theorem from 16.9)

## 4. Mmmmmh, Donut Holes

Video: Winding Number
(This is not directly related to Green's Theorem, but you can use Green to prove this result)

Suppose $F$ is conservative, but undefined at $(0,0)$ (so there is a hole at $(0,0))$, like $F=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$.

In that case, we don't have $\int_{C} F \cdot d r=0$ any more, but:

## Fact

$\int_{C} F \cdot d r$ is still independent of $C$, as long as $C$ encloses $(0,0)$ (and $C$ is simple $=$ no crossings)

Simple


Not Simple


In the above picture $\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r$

Example
Calculate $\int_{C} F \cdot d r$

$$
F=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle
$$

And $C$ is any simple curve enclosing $(0,0)$

## (1) Picture:

Idea: Since the answer is the same anyway, choose the easiest curve enclosing $(0,0)$ (the one that simplifies $F$ as much as possible)


So Let $C^{\prime}$ be the circle centered at $(0,0)$ and radius 1 .
(2) Parametrize $C^{\prime}$ :

$$
\left\{\begin{array}{c}
x(t)=\cos (t) \\
y(t)=\sin (t) \\
0 \leq t \leq 2 \pi
\end{array}\right.
$$

$$
\begin{align*}
\int_{C^{\prime}} F \cdot d r & =\int_{0}^{2 \pi}\left\langle\frac{-\sin (t)}{\cos ^{2}(t)+\sin ^{2}(t)}, \frac{\cos (t)}{\cos ^{2}(t)+\sin ^{2}(t)}\right\rangle \cdot\langle-\sin (t), \cos (t)\rangle d t  \tag{3}\\
& =\int_{0}^{2 \pi} \sin ^{2}(t)+\cos ^{2}(t) d t \\
& =\int_{0}^{2 \pi} 1 d t \\
& =2 \pi
\end{align*}
$$

(4) By Fact:

$$
\int_{C} F \cdot d r=\int_{C^{\prime}} F \cdot d r=2 \pi
$$

## Remarks:

(1) The fact that we get a nonzero answer (even though $F$ is conservative) should not be seen as a drawback, but as a feature. Already gives us information about the 'topology' of the domain (namely, here there's a hole)
(2) In fact, the whole field of complex analysis exists because the answer is nonzero! (wow)
(3) For any closed curve $C$ (not necessarily simple), $\frac{1}{2 \pi} \int_{C} F \cdot d r$ with $F=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ is called the winding number of $C$
(the origin) and counts how many times $C$ loops around $(0,0)$

Example 1: For the circle $C$, the winding number is (by the above):

$$
\frac{1}{2 \pi} \int_{C} F \cdot d r=\frac{1}{2 \pi} 2 \pi=1
$$

Which makes sense since the circle just loops around $(0,0)$ once


Example 2: In the following example, the winding number of $C$ is 2, because $C$ loops around $(0,0)$ twice.

(4) If you want to learn more about holes, you should check out the field of algebraic topology. In fact, you may have heard of the phrase "A donut is similar to a cup of coffee;" that comes from algebraic topology.

