
LECTURE 16: GREEN’S THEOREM (II)

Welcome to the second part of our Green’s Theorem extravaganza!
Today is all about applications of Green’s Theorem.

Green’s Theorem∫
C

F · dr =

∫ ∫
D

∂Q

∂x
− ∂P

∂y
dxdy

Last time, we saw that Green’s Theorem helps us simplify line inte-
grals. Now you may ask: Is the opposite true? Could we use Green’s
theorem to simplify double integrals? Not really except for one special
case:
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1. Area 51
Recall

Area (D) =

∫ ∫
D

1 dxdy

So IF F = 〈P,Q〉 is such that ∂Q
∂x −

∂P
∂y = 1, then:∫

C

F · dr G
=

∫ ∫
D

∂Q

∂x
− ∂P

∂y
dxdy

=

∫ ∫
D

1dxdy

= Area (D)

Many choices for P and Q such that Qx − Py = 1

(Examples: P = 0, Q = x or P = −y,Q = 0)

“Best” choice: P = −y
2 , Q = x

2 , which gives:

F = 〈P,Q〉 =
〈
−y

2
,
x

2

〉
=

1

2
〈−y, x〉 → 1

2
(−ydx+ xdy)

FACT (Memorize)

Area (D) =
1

2

∫
C

xdy − ydx

Mnemonic: 1
2

∣∣∣∣ x y
dx dy

∣∣∣∣ = 1
2 (xdy − ydx)

2. OMG Example
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Video: Area of Ellipse

Example

Find the area enclosed by the ellipse

x2

42
+
y2

22
= 1

(1) Picture:

(2) 
x(t) = 4 cos(t)

y(t) = 2 sin(t)

0 ≤ t ≤ 2π

https://www.youtube.com/watch?v=PgBV6YIebAs&list=PLJb1qAQIrmmAU22cfpgxqSR5iB7jxh933&index=13
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(3)

Area (D) =
1

2

∫
C

x
dy

dt
− ydx

dt
dt

=
1

2

∫ 2π

0

x(t)y′(t)− y(t)x′(t)dt

=
1

2

∫ 2π

0

4 cos(t)2 cos(t)− 2 sin(t) (−4 sin(t)) dt

=
1

2

∫ 2π

0

8 cos2(t) + 8 sin2(t)︸ ︷︷ ︸
8

dt

=

(
1

2

)
(8) (2π)

=8π

OMG, look how effortless this was!

3. OMGGG Example

Video: Area of a Polygon

You might say “OMG Peyam, there’s no way this could be even more
exciting!!!” Oh, just wait for it! ,

Example

(a) Prep: Find
∫
C xdy−ydx, C : Line connecting (a, b) to (c, d)

(1) Picture:

https://www.youtube.com/watch?v=BSFGwqd12Y0&list=PLJb1qAQIrmmAU22cfpgxqSR5iB7jxh933&index=15
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(2) Parametrize:
x(t) =(1− t)a+ tc = a+ t(c− a)

y(t) =(1− t)b+ td = c+ t(d− b)
0 ≤ t ≤ 1

(3)∫
C

xdy − ydx =

∫ 1

0

x(t)y′(t)− y(t)x′(t)dt

=

∫ 1

0

(a+ t(c− a)) (d− b)− (b+ t(d− b)) (c− a)dt

=

∫ 1

0

a (d− b) +(((((
(((

((
t (c− a) (d− b)− b(c− a)−((((((

((((t (d− b) (c− a)dt

=

∫ 1

0

ad−��ab− bc+��abdt

=ad− bc

=

∣∣∣∣a b
c d

∣∣∣∣
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Therefore:

∫
C

xdy − ydx =

∣∣∣∣a b
c d

∣∣∣∣
OMG Part

(b) Find the area of the pentagon with vertices
(3,−1), (4, 2), (1, 6), (−3, 4), (−2,−1)

(In fact, any polygon works)

(1)
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(2)

Area (D) =
1

2

∫
C

xdy − ydx

=
1

2

(∫
C1

xdy − ydx+

∫
C2

xdy − ydx+ · · ·+
∫
C5

xdy − ydx
)

=
1

2

(∣∣∣∣3 −1
4 2

∣∣∣∣+

∣∣∣∣4 2
1 6

∣∣∣∣+

∣∣∣∣ 1 6
−3 4

∣∣∣∣+

∣∣∣∣−3 4
−2 −1

∣∣∣∣+

∣∣∣∣−2 −1
3 −1

∣∣∣∣)
=

1

2
(10 + 22 + 22 + 11 + 5)

=35 BOOM!!!

Why this works?

A pentagon (or any polygon) is the sum of triangles, which are half-
parallelograms, so
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Area(Pentagon) = Sum of Areas of Triangles

=
1

2
( Sum of areas of Parallelograms )

=
1

2

(
Sum of

∣∣∣∣a b
c d

∣∣∣∣ ) (from Math 3A)

Note: There is a 3 dimensional analog of this, you can check it out
here: Volume of Polyhedron (but it requires a 3D version of Green’s
theorem from 16.9)

4. Mmmmmh, Donut Holes

Video: Winding Number

(This is not directly related to Green’s Theorem, but you can use Green
to prove this result)

Suppose F is conservative, but undefined at (0, 0) (so there is a hole

at (0, 0)), like F =
〈
− y
x2+y2 ,

x
x2+y2

〉
.

In that case, we don’t have
∫
C F · dr = 0 any more, but:

Fact∫
C F · dr is still independent of C, as long as C encloses (0, 0)

(and C is simple = no crossings)

https://www.youtube.com/watch?v=Ok5-MkTHHm8&list=PLJb1qAQIrmmAU22cfpgxqSR5iB7jxh933&index=16
https://www.youtube.com/watch?v=K3AB4jk7nkU&list=PLJb1qAQIrmmAU22cfpgxqSR5iB7jxh933&index=21
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In the above picture
∫
C F · dr =

∫
C ′ F · dr



10 LECTURE 16: GREEN’S THEOREM (II)

Example

Calculate
∫
C F · dr

F =

〈
− y

x2 + y2
,

x

x2 + y2

〉
And C is any simple curve enclosing (0, 0)

(1) Picture:

Idea: Since the answer is the same anyway, choose the easiest
curve enclosing (0, 0) (the one that simplifies F as much as
possible)

So Let C ′ be the circle centered at (0, 0) and radius 1.

(2) Parametrize C ′:
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
x(t) = cos(t)

y(t) = sin(t)

0 ≤ t ≤ 2π

(3)∫
C ′
F · dr =

∫ 2π

0

〈
− sin(t)

cos2(t) + sin2(t)
,

cos(t)

cos2(t) + sin2(t)

〉
· 〈− sin(t), cos(t)〉 dt

=

∫ 2π

0

sin2(t) + cos2(t)dt

=

∫ 2π

0

1dt

=2π

(4) By Fact: ∫
C

F · dr =

∫
C ′
F · dr = 2π

Remarks:

(1) The fact that we get a nonzero answer (even though F is con-
servative) should not be seen as a drawback, but as a feature.
Already gives us information about the ‘topology’ of the domain
(namely, here there’s a hole)

(2) In fact, the whole field of complex analysis exists because the
answer is nonzero! (wow)

(3) For any closed curve C (not necessarily simple), 1
2π

∫
C F · dr

with F =
〈
− y
x2+y2 ,

x
x2+y2

〉
is called the winding number of C
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(the origin) and counts how many times C loops around (0, 0)

Example 1: For the circle C, the winding number is (by the
above):

1

2π

∫
C

F · dr =
1

2π
2π = 1

Which makes sense since the circle just loops around (0, 0) once

Example 2: In the following example, the winding number of
C is 2, because C loops around (0, 0) twice.
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(4) If you want to learn more about holes, you should check out the
field of algebraic topology. In fact, you may have heard of the
phrase “A donut is similar to a cup of coffee;” that comes from
algebraic topology.


	1. Area 51
	2. OMG Example
	3. OMGGG Example
	4. Mmmmmh, Donut Holes

