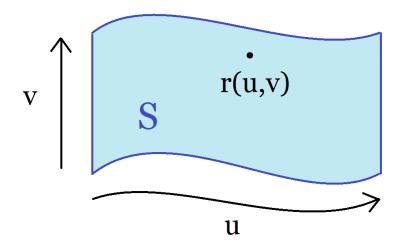
LECTURE 17: PARAMETRIC SURFACES (I)

1. Examples

The goal for the rest of the course is to generalize everything that we know about line integrals to surfaces.

Today's Goal: How to parametrize a surface S?



Since S is 2-dimensional, we need 2 parameters u and v. The analog of r(t) is then r(u, v).

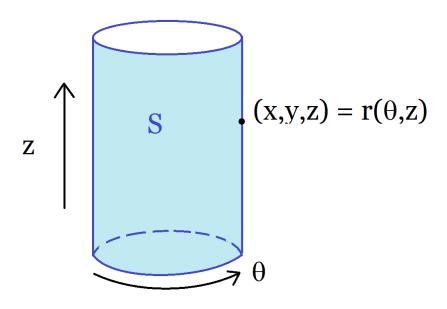
Date: Friday, February 14, 2020.

1

Example 1

Parametrize the cylinder $x^2 + y^2 = 4$

It's just cylindrical coordinates with r=2



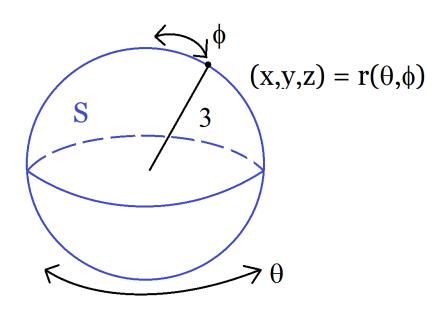
$$\begin{cases} x = 2\cos(\theta) \\ y = 2\sin(\theta) \\ z = z \end{cases}$$

$$r(\theta, z) = \langle 2\cos(\theta), 2\sin(\theta), z \rangle$$

With $0 \le \theta \le 2\pi, -\infty < z < \infty$

Example 2

Parametrize the sphere $x^2 + y^2 + z^2 = 9$

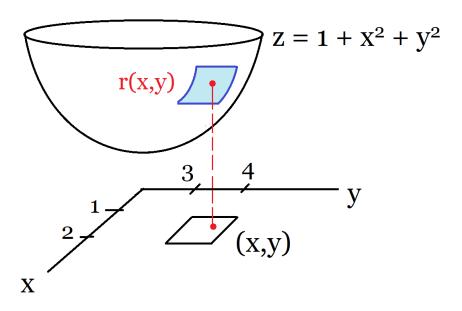


$$\begin{cases} x = 3\sin(\phi)\cos(\theta) \\ y = 3\sin(\phi)\sin(\theta) \\ z = 3\cos(\phi) \end{cases}$$

$$r(\theta,\phi) = \langle 3\sin(\phi)\cos(\theta), 3\sin(\phi)\sin(\theta), 3\cos(\phi)\rangle$$
 With $0 \le \theta \le 2\pi, 0 \le \phi \le \pi$

Example 3: Functions

Parametrize the portion of the paraboloid $z=1+x^2+y^2$ over the rectangle $[1,2]\times[3,4]$



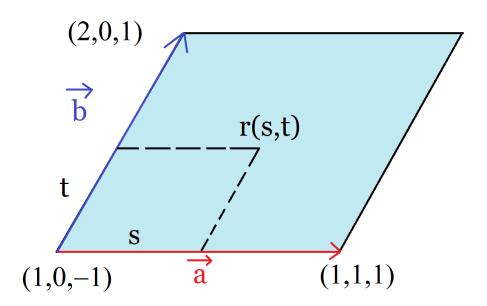
$$\begin{cases} x = x \\ y = y \\ z = 1 + x^2 + y^2 \end{cases} \implies \begin{aligned} r(x,y) &= \langle x, y, 1 + x^2 + y^2 \rangle \\ 1 &\leq x \leq 2 \\ 3 &\leq y \leq 4 \end{cases}$$

More generally, for functions f, $r(x,y) = \langle x, y, f(x,y) \rangle$

(So surfaces are more general than functions)

Example 4: Planes (will probably skip)

Parametrize the plane containing A=(1,0,-1), B=(1,1,1), C=(2,0,1)



$$\mathbf{b} = \langle 2 - 1, 0 - 0, 1 - (-1) \rangle = \langle 1, 0, 2 \rangle$$

$$r(s, t) = \underbrace{\langle 1, 0, -1 \rangle}_{\text{Start}} + s\mathbf{a} + t\mathbf{b}$$

$$= \langle 1, 0, -1 \rangle + s \langle 0, 1, 2 \rangle + t \langle 1, 0, 2 \rangle$$

$$= \langle 1 + t, s, -1 + 2s + 2t \rangle$$

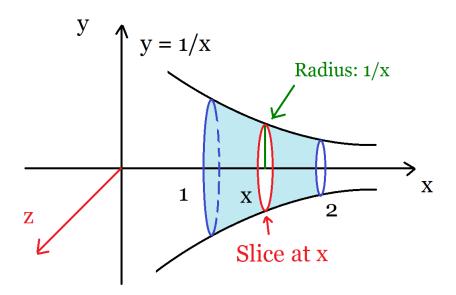
$$- \infty < s < \infty, -\infty < t < \infty$$

 $\mathbf{a} = \langle 1 - 1, 1 - 0, 1 - (-1) \rangle = \langle 0, 1, 2 \rangle$

(If you've taken 3A, then S is a linear combo of \mathbf{a} and \mathbf{b})

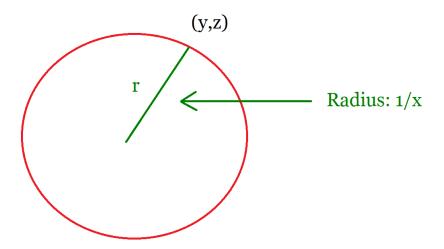
Example 5: Solids of Revolution (will probably skip)

(Math 2B) Parametrize the Surface obtained by rotating the curve $y=\frac{1}{x}$ between x=1 and x=2 about the x-axis



Start with x = x, $1 \le x \le 2$.

Look at slice at x:

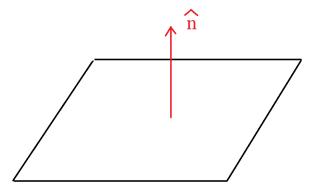


$$\begin{cases} y = r\cos(\theta) = \left(\frac{1}{x}\right)\cos(\theta) \\ z = r\sin(\theta) = \left(\frac{1}{x}\right)\sin(\theta) \end{cases}$$
$$r(x, \theta) = \left\langle x, \left(\frac{1}{x}\right)\cos(\theta), \left(\frac{1}{x}\right)\sin(\theta) \right\rangle$$
$$1 \le x \le 2$$
$$0 \le \theta \le 2\pi$$

More generally: If you rotate the function f(x) about the x-axis, then $r(x, \theta) = \langle x, f(x) \cos(\theta), f(x) \sin(\theta) \rangle$

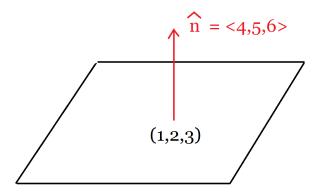
2. Quick Facts about Planes

Math 2D: The single, MOST IMPORTANT thing about a plane is the NORMAL VECTOR \hat{n} !!!



Example

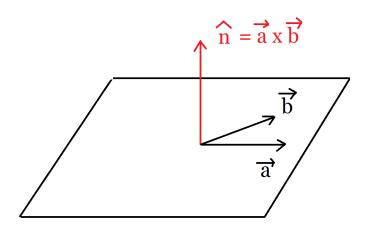
Find the equation of the plane going through (1,2,3) and with normal vector $\hat{n}=\langle 4,5,6\rangle$



$$4(x-1) + 5(x-2) + 6(z-3) = 0$$

THIS is why \hat{n} is important; it allows us to easily find the equation of a plane.

Math 2D: If a plane contains vectors **a** and **b**, then $\hat{n} = \mathbf{a} \times \mathbf{b}$

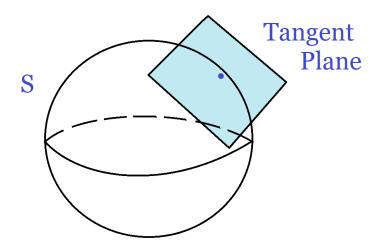


This is why the cross product is important; it allows us to find \hat{n} .

3. Tangent Planes

Video: Tangent Plane to a Surface

Goal: Find the tangent plane to a surface (just like we you did for functions in Math 2D)



Here is where parametrizations and normal vectors help us!

Example:

Find the equation of the tangent plane to

$$r(u, v) = \langle u^2 + 1, v^2 + 1, u + v \rangle$$

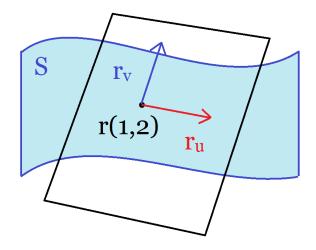
At u = 1, v = 2

(1) **Slopes:** Calculate r_u and r_v (at u = 1, v = 2)

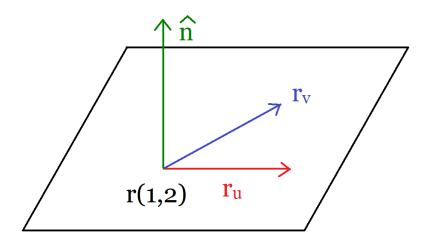
$$r_u = \langle (u^2 + 1)_u, (v^2 + 1)_u, (u + v)_u \rangle = \langle 2u, 0, 1 \rangle = \langle 2, 0, 1 \rangle \text{ (at } u = 1, v = 2)$$

$$r_v = \langle (u^2 + 1)_v, (v^2 + 1)_v, (u + v)_v \rangle = \langle 0, 2v, 1 \rangle = \langle 0, 4, 1 \rangle$$

Fact: r_u and r_v are on the tangent plane



(2) Normal Vector:



$$\hat{n} = r_u \times r_v$$
= $\langle 2, 0, 1 \rangle \times \langle 0, 4, 1 \rangle$
= $\begin{vmatrix} i & j & k \\ 2 & 0 & 1 \\ 0 & 4 & 1 \end{vmatrix}$
= $\begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} i - \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} j + \begin{vmatrix} 2 & 0 \\ 0 & 4 \end{vmatrix} k$
= $-4i - 2j + 8k$
= $\langle -4, -2, 8 \rangle$

(3) **Point:**

$$r(1,2) = \langle 1^2 + 1, 2^2 + 1, 1 + 2 \rangle = \langle 2, 5, 3 \rangle$$

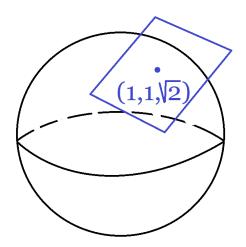
(4) **Equation:** $\hat{n} = \langle -4, -2, 8 \rangle$, Point (2, 5, 3)

$$-4(x-2) - 2(y-5) + 8(z-3) = 0$$

Example:

Same but for $x^2 + y^2 + z^2 = 4$ at $(1, 1, \sqrt{2})$

(1) Picture:



(2)

$$\begin{cases} x = 2\sin(\phi)\cos(\theta) \\ y = 2\sin(\phi)\sin(\theta) \\ z = 2\cos(\phi) \end{cases}$$

$$r(\theta, \phi) = \langle 2\sin(\phi)\cos(\theta), 2\sin(\phi)\sin(\theta), 2\cos(\phi) \rangle$$

(3) Find θ and ϕ (analog of u=1 and v=2)

$$(2\sin(\phi)\cos(\theta), 2\sin(\phi)\sin(\theta), 2\cos(\phi)) = (1, 1, \sqrt{2})$$

$$\begin{cases} 2\cos(\phi) = \sqrt{2} \Rightarrow \cos(\phi) = \frac{1}{\sqrt{2}} \Rightarrow \phi = \frac{\pi}{4} \\ 2\sin(\phi)\cos(\theta) = 1 \Rightarrow 2\left(\frac{1}{\sqrt{2}}\right)\cos(\theta) = 1 \Rightarrow & \cos(\theta) = \frac{1}{\sqrt{2}} \\ 2\sin(\phi)\sin(\theta) = 1 \Rightarrow 2\left(\frac{1}{\sqrt{2}}\right)\sin(\theta) = 1 \Rightarrow & \sin(\theta) = \frac{1}{\sqrt{2}} \end{cases}$$

Which gives $\theta = \frac{\pi}{4}$ and $\phi = \frac{\pi}{4}$

(4) Slopes

$$r_{\theta} = \langle -2\sin(\phi)\sin(\theta), 2\sin(\phi)\cos(\theta), 0 \rangle$$

$$= \left\langle -2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right), 2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right), 0 \right\rangle$$

$$(\text{Use } \theta = \frac{\pi}{4}, \phi = \frac{\pi}{4})$$

$$= \langle -1, 1, 0 \rangle$$

$$r_{\phi} = \langle 2\cos(\phi)\cos(\theta), 2\cos(\phi)\sin(\theta), -2\sin(\phi) \rangle$$
$$= \left\langle 2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right), 2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right), -2\left(\frac{1}{\sqrt{2}}\right) \right\rangle$$
$$= \left\langle 1, 1, -\sqrt{2} \right\rangle$$

(5) Normal Vector

$$\hat{n} = r_{\theta} \times r_{\phi}$$

$$= \begin{vmatrix} i & j & k \\ -1 & 1 & 0 \\ 1 & 1 & -\sqrt{2} \end{vmatrix}$$

$$= \left\langle -\sqrt{2}, -\sqrt{2}, -2 \right\rangle$$

- (6) **Point:** $(1, 1, \sqrt{2})$
- (7) Equation:

$$-\sqrt{2}(x-1) - \sqrt{2}(y-1) - 2(z - \sqrt{2}) = 0$$