LECTURE 22: THE DIVERGENCE THEOREM (II)

Let's quickly recap what we know about surface integrals (I know those topics get confusing very quickly)

1. Recap about Surface Integrals

(1) Every surface S has a normal vector

$$
\begin{aligned}
& \text { Normal Vector } \\
& \qquad \hat{n}=r_{u} \times r_{v}
\end{aligned}
$$

(2) Surface Integral of a Vector Field

Surface Integral of a Vector Field

$$
\iint_{S} F \cdot d \mathbf{S}=\iint_{D} F \cdot \hat{n} d u d v=\iint_{D} F \cdot\left(r_{u} \times r_{v}\right) d u d v
$$

(Again, the idea is that you sum up the values of F on the surface S, by dotting F with the normal vector \hat{n})

(3) Mini-Parallelograms

Mini-Parallelograms

$$
d S=\left\|r_{u} \times r_{v}\right\| d u d v=\|\hat{n}\| d u d v
$$

(4) Surface Integral of a function

$$
\begin{aligned}
& \text { Surface Integral of } f \\
& \qquad \iint_{S} f d S=\iint_{D} f \underbrace{\left\|r_{u} \times r_{v}\right\| d u d v}_{d S}=\iint_{D} f\|\hat{n}\| d u d v
\end{aligned}
$$

(Summing up a function f over a surface)

2. The Adult Surface Integral

Question: Are $\iint_{S} F \cdot d \mathbf{S}$ and $\iint_{S} f d S$ related? Yes, and this will be very useful for today.

Definition

$$
n=\frac{\hat{n}}{\|\hat{n}\|}=\text { Unit normal vector }(\text { Length }=1)
$$

Now let's look again at our surface integral:

$$
\begin{aligned}
\iint_{S} F \cdot d \mathbf{S} & =\iint_{D} F \cdot \hat{n} d u d v \\
& =\iint_{D} F \cdot \underbrace{\frac{\hat{n}}{\|\hat{n}\|}}_{n} \underbrace{\|\hat{n}\| d u d v}_{d S} \\
& =\iint_{S} F \cdot n d S
\end{aligned}
$$

Adult Surface Integral

$$
\iint_{S} F \cdot d \mathbf{S}=\iint_{S} F \cdot n d S
$$

So the surface integral of the vector field F is the surface integral of the function $F \cdot n$.

And again, this really expresses the fact that we're summing up the values of F over the surface S.

3. An Important Normal Vector

Because of this formula, it's important to find n for some surfaces. Luckily there's one surface where n is easy to find.

Example 1:

Find n where S is the sphere $x^{2}+y^{2}+z^{2}=r^{2}$

Notice $\hat{n}=\langle x, y, z\rangle$
(technically, it should be $c\langle x, y, z\rangle$, since \hat{n} is proportional to $\langle x, y, z\rangle$, but it gives you the same result)

Therefore:

$$
n=\frac{\langle x, y, z\rangle}{\|\langle x, y, z\rangle\|}=\frac{\langle x, y, z\rangle}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{r}\langle x, y, z\rangle
$$

Fact:

For the sphere of radius r :

$$
n=\frac{1}{r}\langle x, y, z\rangle
$$

4. Volumes

Let's use this fact and the divergence theorem to get an OMG example! (Very similar to the section on Areas when we did Green's theorem)

Recall: Divergence Theorem

$$
\iint_{S} F \cdot d \mathbf{S}=\iiint_{E} \operatorname{div}(F) d x d y d z
$$

Now IF F is chosen such that $\operatorname{div}(F)=1$, then

$$
\iint_{S} F \cdot d \mathbf{S}=\iiint_{E} 1=\operatorname{Vol}(E)
$$

Many choices for $F: F=\langle x, 0,0\rangle,\langle 0, y, 0\rangle,\langle 0,0, z\rangle$ and others
Best choice: (most balanced): $F=\frac{1}{3}\langle x, y, z\rangle$, which gives us:
Fact: (Memorize)

$$
\operatorname{Vol}(E)=\iint_{S} F \cdot d \mathbf{S} \quad F=\frac{1}{3}\langle x, y, z\rangle
$$

Let's use this to find the Volume of a ball!

OMG Example 2:

Find the Volume of a Ball of Radius r

$$
\begin{aligned}
& \operatorname{Vol}(E)=\iint_{S} F \cdot d \mathbf{S} \quad F=\frac{1}{3}\langle x, y, z\rangle \\
&=\iint_{S} F \cdot n d S \quad \text { Adult Surface Integral } \\
&=\iint_{S} \frac{1}{3}\langle x, y, z\rangle \\
& \underbrace{\frac{1}{r}\langle x, y, z\rangle}_{F} d \underbrace{}_{n} d S \text { is a sphere of radius } r \\
&=\left(\frac{1}{3}\right)\left(\frac{1}{r}\right) \iint_{S} x^{2}+y^{2}+z^{2} d S \\
&=\frac{1}{3 r} \iint_{S} r^{2} d S \\
&=\frac{r^{2}}{3 r} \iint_{S} 1 d S \\
&=\frac{r}{3} \text { Area }(S) \\
&=\frac{r}{3} 4 \pi r^{2} \\
&=\frac{4}{3} \pi r^{3} \quad \text { EFFORTLESS! }
\end{aligned}
$$

(On the HW, I ask you to derive the surface area of a sphere in a similar way)

OMG Remark:

Notice that $\left(\frac{4}{3} \pi r^{3}\right)^{\prime}=4 \pi r^{2}$. Is this a coincidence? Actually no! (see HW or this video; this result is true in any dimensions)

5. The Genesis of Laplace

If you combine the divergence with the gradient ∇, then you get a monster called the Laplacian:

$$
\operatorname{div}(\nabla f)=\operatorname{div}\left(\left\langle f_{x}, f_{y}, f_{z}\right\rangle\right)=\left(f_{x}\right)_{x}+\left(f_{y}\right)_{y}+\left(f_{z}\right)_{z}=f_{x x}+f_{y y}+f_{z z}=\Delta f
$$

Fact:

$$
\operatorname{div}(\nabla f)=\Delta f=f_{x x}+f_{y y}+f_{z z}
$$

And associated to this is:

Laplace's Equation:

$$
\Delta f=0
$$

The next example explains (sort of) where Laplace's equation comes from:

Example 3:

Suppose $\Delta f=0$ in E and define $F=\nabla f$. Show that $\iint_{S} F \cdot d \mathbf{S}=$ 0

$$
\begin{aligned}
\iint_{S} F \cdot d \mathbf{S} & =\iiint_{E} \operatorname{div}(F) d x d y d z \\
& =\iiint_{E} \operatorname{div}(\nabla f) d x d y d z \quad(F=\nabla f) \\
& =\iiint_{E} \Delta f d x d y d z \quad \text { (Definition) } \\
& =\iiint_{E} 0 d x d y d z \\
& =0
\end{aligned}
$$

Interpretation: If $\mathrm{f} \Delta f=0$, then $\iint_{S} F \cdot d \mathbf{S}=0$ means that $F=\nabla f$ is in equilibrium (net flux $=0$, Flow in $=$ Flow out)

Equilibrium

Not Equilibrium

Note: $\Delta f=0$ is the single, most important equation in the universe! Here are some applications:
(1) $\Delta f=0$ measures a fluid in equilibrium
(2) The solution $f(x, y, z)$ of $\Delta f=0$ gives you the temperature of a metal solid E after a long time (think of a metal plate that you took out of the oven and let it sit for a long time)

(3) It's because of Laplace's equation that I got my PhD. If you're curious about what my thesis was about, check out The PDE that gave me the PhD.
(4) Really cool application: Suppose you start at a point (x, y, z) and you perform Brownian motion ($=$ drunken motion) until you hit a wall at $\left(x^{\star}, y^{\star}, z^{\star}\right)$, where you pay a penalty $g\left(x^{\star}, y^{\star}, z^{\star}\right)$.

(Analogy: You're driving drunk (please don't do this!), and $g\left(x^{\star}, y^{\star}, z^{\star}\right)$ is the money that you have to pay to the insurance)

This is a random process, but we can still calculate iyts average value of this event.

Let $f(x, y, z)=$ Average payoff/penalty you get, starting at (x, y, z).

Cool Fact

Then f solves $\Delta f=0$

Some related equations

Here $f=f(x, y, z, t)((x, y, z)$ is position and t is time $)$
(1) $f_{t}=\Delta f$ (Heat equation; Temperature of metal plate for all time)
(2) $f_{t t}=\Delta f$ (Wave equation; Height of a wave at (x, y, z) and time t)

VERY different equations! One t makes a big difference!

