LECTURE 22: THE DIVERGENCE THEOREM (II)

Let’s quickly recap what we know about surface integrals (I know those topics get confusing very quickly)

1. Recap about Surface Integrals
 (1) Every surface S has a normal vector

 Normal Vector
 \[
 \hat{n} = r_u \times r_v
 \]

 \[
 \hat{n} = r_u \times r_v
 \]

 (2) Surface Integral of a Vector Field
Surface Integral of a Vector Field

\[\iint_{S} F \cdot dS = \iint_{D} F \cdot \hat{n} dudv = \iint_{D} F \cdot (r_{u} \times r_{v}) dudv \]

(Again, the idea is that you sum up the values of \(F \) on the surface \(S \), by dotting \(F \) with the normal vector \(\hat{n} \))

(3) Mini-Parallelograms

\[dS = \|r_{u} \times r_{v}\| \ dudv = \|\hat{n}\| \ dudv \]
(4) Surface Integral of a function

Surface Integral of f

\[
\int \int \int_S f \, dS = \int \int_D f \left\| r_u \times r_v \right\| \, du \, dv = \int \int_D f \left\| \hat{n} \right\| \, du \, dv
\]

(Summing up a function f over a surface)

2. The Adult Surface Integral

Question: Are $\int \int_S F \cdot dS$ and $\int \int_S f \, dS$ related? Yes, and this will be very useful for today.

Definition

\[
n = \frac{\hat{n}}{\left\| \hat{n} \right\|} = \text{Unit normal vector (Length = 1)}
\]
Now let’s look again at our surface integral:

\[
\int \int_S F \cdot dS = \int \int_D F \cdot \hat{n} \, dudv
\]

\[
= \int \int_D F \cdot \underbrace{\hat{n}}_{\parallel \hat{n} \parallel} \underbrace{\parallel \hat{n} \parallel}_{dS} \, dudv
\]

\[
= \int \int_S F \cdot n \, dS
\]

Adult Surface Integral

\[
\int \int_S F \cdot dS = \int \int_S F \cdot n \, dS
\]
So the surface integral of the vector field F is the surface integral of the function $F \cdot n$.

And again, this really expresses the fact that we’re summing up the values of F over the surface S.

3. An Important Normal Vector

Because of this formula, it’s important to find n for some surfaces. Luckily there’s one surface where n is easy to find.

Example 1:

Find n where S is the sphere $x^2 + y^2 + z^2 = r^2$
Notice \(\hat{n} = \langle x, y, z \rangle \)

(technically, it should be \(c \langle x, y, z \rangle \), since \(\hat{n} \) is proportional to \(\langle x, y, z \rangle \), but it gives you the same result)

Therefore:

\[
n = \frac{\langle x, y, z \rangle}{\|\langle x, y, z \rangle\|} = \frac{\langle x, y, z \rangle}{\sqrt{x^2 + y^2 + z^2}} = \frac{1}{r} \langle x, y, z \rangle
\]

Fact:

For the sphere of radius \(r \):

\[
n = \frac{1}{r} \langle x, y, z \rangle
\]

4. **Volumes**
Let’s use this fact and the divergence theorem to get an OMG example! (Very similar to the section on Areas when we did Green’s theorem)

Recall: Divergence Theorem

\[\int \int_S F \cdot dS = \int \int \int_E \text{div}(F) \, dx \, dy \, dz \]

Now **IF** \(F \) is chosen such that \(\text{div}(F) = 1 \), then

\[\int \int_S F \cdot dS = \int \int \int_E 1 = \text{Vol}(E) \]

Many choices for \(F \): \(F = \langle x, 0, 0 \rangle, \langle 0, y, 0 \rangle, \langle 0, 0, z \rangle \) and others

Best choice: (most balanced): \(F = \frac{1}{3} \langle x, y, z \rangle \), which gives us:

Fact: (Memorize)

\[\text{Vol}(E) = \int \int_S F \cdot dS \quad F = \frac{1}{3} \langle x, y, z \rangle \]

Let’s use this to find the Volume of a ball!

OMG Example 2:

Find the Volume of a Ball of Radius \(r \)
\[\text{Vol}(E) = \int \int_S F \cdot dS \quad F = \frac{1}{3} \langle x, y, z \rangle \]

\[= \int \int_S F \cdot n \, dS \quad \text{Adult Surface Integral} \]

\[= \int \int_S \frac{1}{3} \langle x, y, z \rangle \cdot \frac{1}{r} \langle x, y, z \rangle \, dS \quad \text{S is a sphere of radius } r \]

\[= \left(\frac{1}{3} \right) \left(\frac{1}{r} \right) \int \int_S x^2 + y^2 + z^2 \, dS \]

\[= \frac{1}{3r} \int \int_S r^2 \, dS \]

\[= \frac{r^2}{3r} \int \int_S 1 \, dS \]

\[= \frac{r}{3} \text{Area}(S) \]

\[= \frac{4 \pi r^2}{3} \]

\[= \frac{4}{3} \pi r^3 \quad \text{EFFORTLESS!} \]
(On the HW, I ask you to derive the surface area of a sphere in a similar way)

OMG Remark:
Notice that \((\frac{4}{3}\pi r^3)' = 4\pi r^2\). Is this a coincidence? Actually no! (see HW or this video; this result is true in any dimensions)

5. **The Genesis of Laplace**
If you combine the divergence with the gradient \(\nabla\), then you get a monster called the Laplacian:

\[
\text{div}(\nabla f) = \text{div}(\langle f_x, f_y, f_z \rangle) = (f_x)_x + (f_y)_y + (f_z)_z = f_{xx} + f_{yy} + f_{zz} = \Delta f
\]

Fact:
\[
\text{div}(\nabla f) = \Delta f = f_{xx} + f_{yy} + f_{zz}
\]

And associated to this is:

Laplace’s Equation:
\[
\Delta f = 0
\]

The next example explains (sort of) where Laplace’s equation comes from:
Example 3:

Suppose $\Delta f = 0$ in E and define $F = \nabla f$. Show that $\int \int_S F \cdot dS = 0$

\[
\int \int_S F \cdot dS = \int \int \int_E \text{div}(F) dxdydz
\]
\[
= \int \int \int_E \text{div}(\nabla f) dxdydz \quad (F = \nabla f)
\]
\[
= \int \int \int_E \Delta f dxdydz \quad (\text{Definition})
\]
\[
= \int \int \int_E 0 dxdydz
\]
\[
=0
\]

Interpretation: If $f \Delta f = 0$, then $\int \int_S F \cdot dS = 0$ means that $F = \nabla f$ is in equilibrium (net flux = 0, Flow in = Flow out)
Note: $\Delta f = 0$ is the single, most important equation in the universe!
Here are some applications:

(1) $\Delta f = 0$ measures a fluid in equilibrium

(2) The solution $f(x, y, z)$ of $\Delta f = 0$ gives you the temperature of a metal solid E after a long time (think of a metal plate that you took out of the oven and let it sit for a long time)

(3) It’s because of Laplace’s equation that I got my PhD. If you’re curious about what my thesis was about, check out The PDE that gave me the PhD.

(4) Really cool application: Suppose you start at a point (x, y, z) and you perform Brownian motion (= drunken motion) until you hit a wall at (x^*, y^*, z^*), where you pay a penalty $g(x^*, y^*, z^*)$.
Analogy: You’re driving drunk (please don’t do this!), and $g(x^*, y^*, z^*)$ is the money that you have to pay to the insurance.

This is a random process, but we can still calculate its average value of this event.
Let \(f(x, y, z) = \) Average payoff/penalty you get, starting at \((x, y, z)\).

Cool Fact

Then \(f \) solves \(\Delta f = 0 \)

Some related equations

Here \(f = f(x, y, z, t) \) ((\(x, y, z\)) is position and \(t \) is time)

1. \(f_t = \Delta f \) (Heat equation; Temperature of metal plate for all time)
2. \(f_{tt} = \Delta f \) (Wave equation; Height of a wave at \((x, y, z)\) and time \(t \))

VERY different equations! One \(t \) makes a big difference!