LECTURE 25: STOKES' THEOREM (II)

1. Quick Recap

Previously on I'm so Stoked, we learned about an amazing theorem that relates line integrals with surface integrals.

Stokes' Theorem

Let S be a surface with boundary C, then:

$$
\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S}=\int_{C} F \cdot d r
$$

Date: Tuesday, March 10, 2020.

Last time: We used Stokes to calculate $\iint_{S} \operatorname{curl}(F)$, but today we'll use it to calculate $\int_{C} F \cdot d r$

2. A Cylindrical Example

Video: Stokes' Theorem

Example 1:

Evaluate $\int_{C} F \cdot d r$

$$
F=\langle x y, y z, x z\rangle
$$

C is the curve of intersection of $z=y+2$ and $x^{2}+y^{2}=1$ (in the counterclockwise direction)
(1) Picture:

(2) By Stokes:

$$
\int_{C} F \cdot d r=\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S}
$$

$$
\begin{aligned}
\operatorname{curl}(F) & =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & y z & x z
\end{array}\right| \\
& =\left\langle\frac{\partial}{\partial y}(x z)-\frac{\partial}{\partial z}(y z),-\frac{\partial}{\partial x}(x z)+\frac{\partial}{\partial z}(x y), \frac{\partial}{\partial x}(y z)-\frac{\partial}{\partial y}(x y)\right\rangle \\
& =\langle-y,-z,-x\rangle \quad \text { EASIER }
\end{aligned}
$$

(3) What is \mathbf{S} ?

Stokes' Miracle

We can choose S to be anything we want, as long as the boundary of S is C

(Why? The quantity $\int_{C} F \cdot d r$ only depends on C, not on S)

Easiest choice: Let S be the interior (inside) of C.

Parametrize S :

$$
\begin{gathered}
r(x, y)=\langle x, y, \underbrace{y+2}_{z}\rangle \\
r_{x}=\langle 1,0,0\rangle \\
r_{y}=\langle 0,1,1\rangle \\
\hat{n}=r_{x} \times r_{y}=\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|=\langle 0,-1,1\rangle
\end{gathered}
$$

(Mentally check WALK Left, that is the counterclockwise orientation of C matches the direction of \hat{n})
(4)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{S} \operatorname{curl} F \cdot d \mathbf{S} \\
& =\iint_{D} \underbrace{\langle-y,-(y+2),-x\rangle}_{\langle-y,-z,-x\rangle} \cdot \underbrace{\langle 0,-1,1\rangle}_{\hat{n}} d x d y \\
& =\iint_{D} y+2-x d x d y \quad(\mathrm{D} \text { is a disk of radius } 1) \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(r \sin (\theta)+2-r \cos (\theta)) r d r d \theta \\
& =\cdots \\
& =2 \pi
\end{aligned}
$$

3. A Spherical Example

Example 2:

$\int_{C} F \cdot d r$
$F=\left\langle x+y^{2}, y+z^{2}, z+x^{2}\right\rangle$
C is the boundary of the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ in the $x y$-plane (oriented counterclockwise)

(1) Picture:

(2) By Stokes:

$$
\begin{gathered}
\int_{C} F \cdot d r=\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S} \\
\operatorname{curl}(F)=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y^{2} & y+z^{2} & z+x^{2}
\end{array}\right| \\
=\left\langle\frac{\partial}{\partial y}\left(z+x^{2}\right)-\frac{\partial}{\partial z}\left(y+z^{2}\right),-\frac{\partial}{\partial x}\left(z+x^{2}\right)+\frac{\partial}{\partial z}\left(x+y^{2}\right),\right. \\
\\
\left.=\frac{\partial}{\partial x}\left(y+z^{2}\right)-\frac{\partial}{\partial y}\left(x+y^{2}\right)\right\rangle \\
=\langle-2 z,-2 x,-2 y\rangle \quad \text { EASIER }
\end{gathered}
$$

(3) What is \mathbf{S} ?

Here C is a circle of radius 2 (let $z=0$ in $z=\sqrt{4-x^{2}-y^{2}}$ to get $x^{2}+y^{2}=4$)

So let $S=$ DISK of radius 2 in the $x y-$ plane!

$r(x, y)=\langle x, y, 0\rangle$

$$
\begin{gathered}
r_{x}=\langle 1,0,0\rangle \\
r_{y}=\langle 0,1,0\rangle \\
\hat{n}=r_{x} \times r_{y}=\left|\begin{array}{lll}
i & j & k \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=\langle 0,0,1\rangle
\end{gathered}
$$

(4)

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S} \\
& =\iint_{D} \underbrace{\langle 0,-2 x,-2 y\rangle}_{\langle-2 z,-2 x,-2 y\rangle} \cdot \underbrace{\langle 0,0,1\rangle}_{\hat{n}} d x d y \\
& =\iint_{D}-2 y d x d y \quad(\text { D is a disk of radius } 2) \\
& =\int_{0}^{2 \pi} \int_{0}^{2}-2 r \sin (\theta) r d r d \theta \\
& =\left(\int_{0}^{2}-2 r^{2} d r\right)\left(\int_{0}^{2 \pi} \sin (\theta) d \theta\right) \\
& =0
\end{aligned}
$$

4. Concluding Remarks

(1) Recall: IF $F=\langle P, Q, R\rangle$ is conservative, THEN $\operatorname{curl}(F)=$ $\langle 0,0,0\rangle$

Now if $\operatorname{curl}(F)=\langle 0,0,0\rangle$ (and no holes), then for any closed C,

$$
\int_{C} F \cdot d r=\iint_{S} \underbrace{\operatorname{curl}(F)}_{\langle 0,0,0\rangle} \cdot d \mathbf{S}=0
$$

So F is conservative by cute fact from 16.3

Hence we have: F conservative $\Leftrightarrow \operatorname{curl}(F)=\langle 0,0,0\rangle$
(2) Important: If S is closed, then:

$$
\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S} \stackrel{D I V}{=} \iiint_{E} \underbrace{\operatorname{div}(\operatorname{curl}(F))}_{0}=0
$$

Point: Stokes in only interesting for open surfaces, where there is a boundary curve C

(3) Stokes FAILS when there is a hole.

Cohomology Theory: How badly does it fail? Gives us interesting information about the topology of the domain.

(4) AMAZING FACT:

There is ONE theorem that takes care of ALL the FTC all at once (FTC Line integrals, Green, Div, Stokes, and even the Math 2B FTC):

General Stokes

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Here:

$$
\begin{aligned}
\partial M= & \text { Boundary of } M \\
\omega= & \text { Function or Vector Field } \\
d \omega= & \text { "Derivative" of } \omega \\
& \text { (Think derivative or curl or div, called a differential form) }
\end{aligned}
$$

In every case, you have "Integral of derivative is the Integral of the function over the boundary"

