LECTURE 28: FINAL EXAM REVIEW SESSION (III) MMMMMH, DONUTS!

Welcome to a special encore episode of That's so Peyam! Today we'll talk about all the non-vector field topics (like surface integrals of functions, or Jacobians), but this time in the context of... donuts!

1. Parametrization

Here is the main example that we'll talk about today:

Example 1:

Let S be the donut obtained by rotating the circle centered at $(0,5,0)$ and radius 3 about the z-axis.

Picture:

Date: Friday, March 13, 2020.

Parametric Equations: (you don't need to know how to derive this)

$$
\left\{\begin{array}{l}
x=(5+3 \cos (\alpha)) \cos (\theta) \\
y=(5+3 \cos (\alpha)) \sin (\theta) \\
z=3 \sin (\alpha)
\end{array}\right.
$$

$0 \leq \theta \leq 2 \pi, 0 \leq \alpha \leq 2 \pi$

$\theta=$ angle between x -axis and $(x, y) \alpha=$ angle between (x, y) and (x, y, z)

2. Surface Area

Video: Surface Area of a Donut

Example 2:

Find the surface area of S

Surface Area:

$$
\operatorname{Area}(S)=\iint_{S} d S=\iint_{D}\left\|r_{\theta} \times r_{\alpha}\right\| d \theta d \alpha
$$

(It's basically $d S=\left\|r_{u} \times r_{v}\right\| d u d v$ but with θ and α instead)
(1)

$$
r(\theta, \alpha)=\langle(5+3 \cos (\alpha)) \cos (\theta),(5+3 \cos (\alpha)) \sin (\theta), 3 \sin (\alpha)\rangle
$$

$$
\begin{aligned}
r_{\theta} & =\langle-(5+3 \cos (\alpha)) \sin (\theta),(5+3 \cos (\alpha)) \cos (\theta), 0\rangle \\
r_{\alpha} & =\langle-3 \sin (\alpha) \cos (\theta),-3 \sin (\alpha) \sin (\theta), 3 \cos (\alpha)\rangle
\end{aligned}
$$

$r_{\theta} \times r_{\alpha}=\left|\begin{array}{ccc}i & j & k \\ r_{\theta} \\ r_{\alpha} & \end{array}\right|$

$$
=\text { A Nightmare }
$$

$$
=\underbrace{3(5+3 \cos (\alpha))}_{\geq 0}\langle\cos (\alpha) \cos (\theta), \cos (\alpha) \sin (\theta),-\sin (\alpha)\rangle
$$

(4) $d S$

$$
\begin{aligned}
d S & =\left\|r_{\theta} \times r_{\alpha}\right\| \\
& =3(5+3 \cos (\alpha)) \|\langle\langle\cos (\alpha) \cos (\theta), \cos (\alpha) \sin (\theta),-\sin (\alpha)\rangle \| \\
& =3(5+3 \cos (\alpha)) \sqrt{\underbrace{\cos ^{2}(\alpha) \cos ^{2}(\theta)+\cos ^{2}(\alpha) \sin ^{2}(\theta)}_{\cos ^{2}(\alpha)}+\sin ^{2}(\theta)} \\
& =3(5+3 \cos (\alpha)) \sqrt{\underbrace{\cos ^{2}(\alpha)+\sin ^{2}(\alpha)}_{1}} \\
& =3(5+3 \cos (\alpha)) \\
& =15+9 \cos (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2 \pi} \int_{0}^{2 \pi} 15+9 \cos (\alpha) d \theta d \alpha \\
& =(15)(2 \pi)(2 \pi) \\
& =60 \pi^{2}
\end{aligned}
$$

Remark: $15(2 \pi)(2 \pi)=(3)(5)(2 \pi)(2 \pi)=(2 \pi 3)(2 \pi 5)$. This makes sense, because, in order to get the donut, you're revolving a circle of radius 3 (with perimeter $2 \pi 3$) around a circle of radius 5 (with perimeter $2 \pi 5$)

Perimeter: $2 \pi(3)$

Perimeter: $2 \pi(5)$
(So in a sense, a donut is a circle times a circle)

3. Surface Integrals of Functions

Example 3:

Calculate $\iint_{S} z d S$

$$
\begin{aligned}
\iint_{S} z d S & =\iint_{D} f(r(\theta, \alpha))\left\|r_{\theta} \times r_{\alpha}\right\| d \theta d \alpha \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \underbrace{3 \sin (\alpha)}_{z} \underbrace{(15+9 \cos (\alpha)) d \theta d \alpha}_{d S} \\
& =\cdots \\
& =0
\end{aligned}
$$

4. Change of Variables

Last but not least, for our Math 2E grand finale, let's:

Example 4:

Calculate the volume of the donut!
(Actually a hidden Jacobian problem!)
(1)

$$
V=\iiint_{E} 1 d x d y d z
$$

(2) Donut Coordinates (will be given)

$$
\left\{\begin{array}{l}
x=(5+r \cos (\alpha)) \cos (\theta) \\
y=(5+r \sin (\alpha)) \cos (\theta) \\
z=r \sin (\alpha)
\end{array}\right.
$$

Here θ and α are as before, and r is the radius:

(3) Find E^{\prime}

$$
\begin{gathered}
0 \leq r \leq 3 \\
0 \leq \theta \leq 2 \pi \\
0 \leq \alpha \leq 2 \pi
\end{gathered}
$$

(This change of variables takes a donut and turns it into a box, wow!)
(4) Jacobian:

$$
d x d y d z=\left|\frac{d x d y d z}{d r d \theta d \alpha}\right| d r d \theta d \alpha
$$

$$
\frac{d x d y d z}{d r d \theta d \alpha}=\left|\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \alpha} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \alpha} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \alpha}
\end{array}\right|
$$

$$
=\text { Some Nightmare }
$$

$$
=r(5+r \cos (\alpha))
$$

(5)

$$
\begin{aligned}
V & =\iiint_{E} 1 d x d y d z \\
& =\iiint_{E^{\prime}} 1 r(3+r \cos (\alpha)) d r d \theta d \alpha \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{3} 3 r+r^{2} \cos (\alpha) d r d \theta d \alpha \\
& =(2 \pi)(2 \pi)\left[\frac{5}{2} r^{2}\right]_{0}^{3} \\
& =(2 \pi)(2 \pi) \frac{5}{2} 3^{2} \\
& =90 \pi^{2}
\end{aligned}
$$

Note: Same as $(2 \pi 5)\left(\pi 3^{2}\right)$
(So in a sense, the full donut is a disk times a circle)

Perimeter: $2 \pi(5)$

And with this, I would like to officially thank you for flying Peyam Airlines; it's been a pleasure having you on board, and I wish you a safe onward journey!

The Cend

