Math 453 — Homework 3

Peyam Tabrizian

Friday, February 24, 2017

This assignment is due on Friday, February 24, at 10:50 AM.

Reading: Sections 2.2.1, 2.2.2, and 2.2.3. Although we'll cover the maximum principle in lecture, I won't assign problems on it until Homework 4 (otherwise this problem set will be too heavy).

Chapter 2: 3, and the two problems below

Hint for 3: Mimic the proof of the mean-value formula, but with x = 0. Then, given r, integrate from 0 to r. At some point, you should be stuck with a term of the form:

$$\int_0^r \frac{1}{s^{n-1}} \int_{B(0,s)} f(y) dy ds$$

To handle this term, let $h(s) = \int_{B(0,s)} f(y) dy$ and then integrate by parts (just the regular 1D-Calculus version, not the one that we learned in class) with respect to s. You may assume, without proof, that the term for s=0 is zero. You would also need to use the result of Theorem 4(ii) on page 712 to find h'(s). Finally, at some point you may need to write s as |y| and use the polar coordinate formula.

Problem 1: Show that if $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, then, as $\epsilon \to 0$, we have

$$\frac{1}{|\partial B(x,\epsilon)|} \int_{\partial B(x,\epsilon)} f(y) dS(y) \to f(x)$$

Hint: Write the fixed number f(x) as an integral over $\partial B(x, \epsilon)$. Also use the fact that, f is uniformly continuous on, say, $\overline{B(x, 1)}$ (the closed ball of radius 1

centered at x, which is compact).

Problem 2: This problem is a fun application of the change-of-variables formula and the polar coordinates formula! For this problem, you are **not** allowed to use the volume/surface area formulas I talked about in lecture because the point of this problem is to derive them from scratch!

- (a) Recall that $\alpha(n)$ is the valume of the unit ball B(0,1) in \mathbb{R}^n . Use this fact and a change-of-variables to find a formula for V(r), the volume of B(x,r), in terms of r and $\alpha(n)$.
- (b) Let A(r) be the surface area of $\partial B(x,r)$. Use the polar coordinates formula to find a formula involving integrals that relates V(r) and A(r).
- (c) Differentiate the integral in (b) with respect to r to find a formula for A(r) in terms of r and $\alpha(n)$. Neat, huh? This explains precisely why A(r) is a derivative of V(r)!

Hint: How can you write the volume/surface area of a region in terms of integrals?