Math 453 - Homework 3

Peyam Tabrizian

Friday, February 24, 2017

This assignment is due on Friday, February 24, at 10:50 AM.
Reading: Sections 2.2.1, 2.2.2, and 2.2.3. Although we'll cover the maximum principle in lecture, I won't assign problems on it until Homework 4 (otherwise this problem set will be too heavy).

Chapter 2: 3, and the two problems below
Hint for 3: Mimic the proof of the mean-value formula, but with $x=0$. Then, given r, integrate from 0 to r. At some point, you should be stuck with a term of the form:

$$
\int_{0}^{r} \frac{1}{s^{n-1}} \int_{B(0, s)} f(y) d y d s
$$

To handle this term, let $h(s)=\int_{B(0, s)} f(y) d y$ and then integrate by parts (just the regular 1D-Calculus version, not the one that we learned in class) with respect to s. You may assume, without proof, that the term for $s=0$ is zero. You would also need to use the result of Theorem 4(ii) on page 712 to find $h^{\prime}(s)$. Finally, at some point you may need to write s as $|y|$ and use the polar coordinate formula.

Problem 1: Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, then, as $\epsilon \rightarrow 0$, we have

$$
\frac{1}{|\partial B(x, \epsilon)|} \int_{\partial B(x, \epsilon)} f(y) d S(y) \rightarrow f(x)
$$

Hint: Write the fixed number $f(x)$ as an integral over $\partial B(x, \epsilon)$. Also use the fact that, f is uniformly continuous on, say, $\overline{B(x, 1)}$ (the closed ball of radius 1
centered at x, which is compact).
Problem 2: This problem is a fun application of the change-of-variables formula and the polar coordinates formula! For this problem, you are not allowed to use the volume/surface area formulas I talked about in lecture because the point of this problem is to derive them from scratch!
(a) Recall that $\alpha(n)$ is the valume of the unit ball $B(0,1)$ in \mathbb{R}^{n}. Use this fact and a change-of-variables to find a formula for $V(r)$, the volume of $B(x, r)$, in terms of r and $\alpha(n)$.
(b) Let $A(r)$ be the surface area of $\partial B(x, r)$. Use the polar coordinates formula to find a formula involving integrals that relates $V(r)$ and $A(r)$.
(c) Differentiate the integral in (b) with respect to r to find a formula for $A(r)$ in terms of r and $\alpha(n)$. Neat, huh? This explains precisely why $A(r)$ is a derivative of $V(r)$!

Hint: How can you write the volume/surface area of a region in terms of integrals?

