Math 453 - Homework 5

Peyam Tabrizian

Friday, March 10, 2017

This assignment is due on Friday, March 10, at 10:50 AM.
Note: The take-home midterm will be given out on Wednesday, March 15, at 11:50 AM and will be due on Friday, March 17 at noon. It will cover up to and including whatever we will cover on Monday, March 13. Note that class on Friday, March 17 will be cancelled, and there will be no homework due that day. There will be a special TA Session on Tuesday, March 14, from 8 to 9 pm in 204 Clark, and no TA Session on Thursday, March 16.

Reading: Section 2.3.1
Chapter 2: 12, 13, 14, and the following Problem:
Additional Problem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given, let F be an antiderivative of $f, \mathcal{A}=\left\{u \in C^{2}(\bar{W}) \mid u=g\right.$ on $\left.\partial W\right\}$, and suppose that $u \in \mathcal{A}$ minimizes the following energy

$$
I[u]=\int_{W} \frac{1}{2}|D u|^{2}-F(u) d x
$$

Mimic the proof of the converse of Dirichlet's principle for Laplace's equation to find a PDE that u must solve. Note that here $F(u)$ is F with input u, not F multiplied by u.
(TURN PAGE for hints)

Hint for 12: Unlike what the hint tells you, you don't have to use (a) to do (b) (unless you find it useful)

Hint for 13: Remember that you're in the case $n=1$. Note that in (a), $z=\frac{x}{\sqrt{t}}$. For (b), what the hint is trying to say is this: Notice that if u is a solution to the heat equation, then so is u_{x}. In particular, if you differentiate the solution you found in (a), you will find a solution of the heat equation. The only issue is finding c, but for this choose c such that the integral of the solution you found in (a) from $-\infty$ to ∞ is equal to 1 . A change of variable is useful here. In the end, you should find the fundamental solution for the case $n=1$. Ignore the hint about the initial condition, unless you find it useful.

Hint for 14: This problem should be shorter than you think: Let $v(x, t)=$ $u(x, t) h(x, t)$, where h is an easy exponential function depending on c that you have to find beforehand (try out a couple of guesses and don't try things that are too complicated), and show that v solves the heat equation with possibly a new inhomogeneous term. Then use formula 17 on page 51. Happy searching!

