
LECTURE 2: REVIEW OF PREREQUISITES

Readings:

• Section 1 of the lecture notes on Convolution

• Section 2 of the lecture notes on the Dominated Convergence
Theorem

• Section 3 of the lecture notes on the Polar Coordinates Formula

• Section 4 of the lecture notes on Integration by Parts

• Section 2.2.1b: Poisson’s Equation (pages 22-25)

1. Convolution

1.1. Definition. Most of this week is focused on review of some of the
‘prerequisites’ needed to survive the rest of the readings.

First of all, we need a smart way of multiplying two functions called
convolution, which is quintessential in analysis:

Convolution:

(f ? g)(x) =

∫
Rn

f(y)g(x− y)dy =

∫
Rn

f(x− y)g(y)dy
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(Always think: The sum has to be x, so y+(x−y) = x and x−y+y =
x).

To emphasize that this is a function of x, let’s do the following:

Example:

(n = 1) Calculate f ? g, where

f(x) = 1[0,1](x) =

{
1 if x ∈ [0, 1]

0 if x /∈ [0, 1]

g(x) = ex
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(f ? g)(x) =

∫
R
f(y)g(x− y)dy

=

∫ ∞
−∞

1[0,1](y)ex−ydy

=

∫ 1

0

1ex−ydy Since f = 0 outside [0, 1]

=ex
∫ 1

0

e−ydy

=ex(1− e−1)

Which indeed is a function of x only.

Note: Here you can find a beautiful demo about what the convolution
of two functions looks like: Convolution Demo. You can also change
your functions at the top if you like

1.2. Some Intuition:

Video: Convolution Intuition

Convolution is just a fancy way of multiplying two functions, in the
following sense:

Example: What is the coefficient of x2 in:

(
x2 + 2x+ 3

) (
2x2 + 4x+ 1

)
= (1× 1 + 2× 4 + 3× 2)x2+· · · = 15x2+· · ·

Notice: To find the coefficient of x2 you’re essentially looking at all
the terms whose exponents sum to 2.

https://phiresky.github.io/convolution-demo/
https://www.youtube.com/watch?v=_8LwWEGNyyM
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So the coefficient of x2 in
(
a2x

2 + a1x+ a0

) (
b2x

2 + b1x+ b0

)
is

c2 =
∑
i+j=2

aibj = a0b2 + a1b1 + a2b0 =
2∑
i=0

aib2−j

Fact:

In general, the coefficient of xk in

(anx
n + · · ·+ a0) (bnx

n + · · ·+ a0) is

ck =
∑
i+j=k

aibj =
k∑
i=0

aibk−i

Compare this to:

(f ? g)(x) =

∫
Rn

f(y)g(x− y)dy

In other words, convolution is just the continuous analog of the above
fact! In other words, (f ? g)(x) is the x-th coefficient of f times g
(where here times is like a polynomial multiplication)

1.3. Relationship with PDEs. Recall that Φ(x) = C
|x|n−2 (funda-

mental solution), solves −∆Φ = 0. The question is now: How do you
solve −∆u = f for any f? It turns out that the following is true:

Theorem:

Let u(x) = (Φ ? f)(x), then −∆u = f
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This is a very beautiful but nontrivial result, which requires delicate
analysis (see section 2.2.1b)

2. The Dominated Convergence Theorem

Motivation: Very often in this course, we will need to pass to the
limit inside an integral

Question:

Suppose fn → f pointwise (that is for every x, fn(x) → f(x) as
n goes to ∞), does it follow that

∫
Rn fn(x)dx→

∫
Rn f(x)dx ?

In other words, does limn→∞
∫
fn =

∫
limn→∞ fn ?

In general, the answer is NO:

Example:

fn(x) = n1(0, 1n) =

{
n if x ∈

(
0, 1

n

)
0 otherwise
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Claim: fn → f(x) =: 0 pointwise

Why? If x /∈ (0, 1), then fn(x) = 0→ 0 as n→∞.

And if x ∈ (0, 1), then for n0 large enough, 1
n0
< x and so if n ≥ n0,

fn(x) = 0→ 0 as n→∞.

Claim:
∫
fn��→

∫
f

∫ ∞
−∞

fn(x)dx =

∫ 1
n

0

n = n

(
1

n
− 0

)
= 1

1 =

∫ ∞
−∞

fn��→
∫ ∞
−∞

f =

∫ ∞
−∞

0 = 0

2.1. The Theorem:

Question:

Under what conditions do we have limn→∞
∫
fn =

∫
f
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It turns out that there is a very elegant condition: If somehow we can
control the fn in a way that’s independent of n, then we’re good! And
this is the essence of:

Dominated Convergence Theorem:

Suppose fn → f pointwise and suppose |fn(x)| ≤ g(x) for some g
independent of n with

∫
g(x) <∞, then∫

fn →
∫
f

In particular, no matter how wild the fn are, as long as they’re trapped
inside a function g whose integral is finite, then in fact we can pass in
the limit inside the integral
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Example:

Suppose
∫
|g(x)| dx < ∞ and |f ′(x)| < C < ∞ for some C > 0,

then does∫
g(x)

(
f(x+ h)− f(x)

h

)
dx→

∫
g(x)f ′(x)dx as h→ 0?

(This is actually the first step in the solution to Poisson’s equation
later in 2.2.1b)

Let fh(x) = g(x)
(
f(x+h)−f(x)

h

)
Enough to show |fh| ≤ g̃ where g̃ is some function with

∫
g̃ <∞

But by the mean value theorem from calculus, f(x+h)−f(x)
h = f ′(c) for

some c, so ∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ = |f ′(c)| < C <∞

And so: ∣∣∣∣g(x)

(
f(x+ h)− f(x)

h

)∣∣∣∣ = |g(x)| |f ′(c)| ≤ C |g(x)|︸ ︷︷ ︸
g̃(x)

And moreover
∫
g̃(x) = C

∫
|g(x)| <∞ (by assumption)

So the result follows from the dominated convergence theorem �

Note: Just know that whenever we pass a limit inside the integral,
we’re implicitly doing the dominated convergence theorem process above!
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3. The Polar Coordinates Formula

Very often in this course we’ll need to integrate a function over a ball
B(0, R), which, in most cases, is hard to do. It turns out, however,
that it’s sometimes easier to decompose the ball into concentric spheres
(think onion rings) and integrate over all the spheres

Note: This is especially useful if you have a function that depends on
|x|

Polar Coordinates Formula:∫
B(0,R)

f(x)dx =

∫ R

0

(∫
∂B(0,r)

f(x)dS(x)

)
dr

(Think like summing up the integrals on the spheres)
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Example:

Calculate
∫
B(0,ε) Φ(x)dx

Here again Φ(x) = Cn

|x|n−2 with Cn = 1
n(n−2)α(n) and α(n) = |B(0, 1)|

(Volume)

By polar coordinates, we get:
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∫
B(0,ε)

Φ(x)dx =

∫ ε

0

(∫
∂B(0,r)

ΦdS

)
dr

=

∫ ε

0

(∫
∂B(0,r)

Cn

|x|n−2dS

)
dr

(Remember |x| = r on ∂B(0, r))

=Cn

∫ ε

0

(∫
∂B(0,r)

1

rn−2
dS

)
dr

=Cn

∫ ε

0

1

rn−2

(∫
∂B(0,r)

1dS

)
dr

=Cn

∫ ε

0

1

rn−2
|∂B(0, r)|︸ ︷︷ ︸
Surface Area

dr

Fact:

|B(0, r)| = α(n)rn

(Think for instance 4
3πr

3 in n = 3)

|∂B(0, r)| = nα(n)rn−1

(Think 4πr2 =
(

4
3πr

3
)′

)

Hence we get
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∫
B(0,ε)

Φ(x)dx =Cn

∫ ε

0

1

rn−2
|∂B(0, r)| dr

=Cn

∫ ε

0

1

rn−2
nα(n)rn−1

=Cnnα(n)

∫ ε

0

rdr

=Cnnα(n)
ε2

2

=
1

n(n− 2)α(n)
nα(n)

ε2

2

=
1

2(n− 2)
ε2

=O(ε2)

4. Integration by Parts

The last thing that we’ll need is a multidimensional version of integra-
tion by parts. In my opinion, it’s the single most important formula
in this course; we’ll be using this over and over again

Goal:

Find a formula for
∫
U(∆u)v

(In practice u is bad but v is good, so we’d like to put all the deriva-
tives on v)

Note: The one-dimensional analog of
∫
U (∆u) v is
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∫ b

a

f ′′g = [f ′g]
b
a −

∫ b

a

f ′g′

So by analogy we should say∫
U

(∆u) v =

∫
∂U

�
��DuvdS −

∫
U

Du·Dv

This definition is almost correct, except for two things: First of all,
Du and Dv are vectors, so the correct way to multiply them is using
the dot product, hence the reason why we wrote Du ·Dv.

More importantly, for the Duv term in ∂U , we would like to replace
Du by a scalar that says something like “The derivative of u on ∂U .
Now remember that U has a special feature called the normal vector
ν, so somehow we would like to take the derivative of u in the direction
of ν



14 LECTURE 2: REVIEW OF PREREQUISITES

Definition:

∂u

∂ν
= Du · ν

is called the normal derivative of u (= directional derivative
in the direction of ν)

Interpretation: If ∂u
∂ν > 0, then u is flowing out of ∂U . And if ∂u

∂ν = 0,
then u is stuck on ∂U (think like putting sticky glue on the boundary
of U)

Example:

Calculate ∂Φ
∂ν on ∂B(0, ε)

∂Φ

∂ν
= DΦ · ν
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Find DΦ:

Φ(x) =
Cn

|x|n−2 = Cn |x|2−n

Φxi = Cn(2− n) |x|1−n ∂ |x|
∂xi

= Cn(2− n) |x|1−n xi
|x|

= Cn(2− n) |x|−n xi

DΦ = (Φx1, · · · ,Φxn)

=
(
Cn(2− n) |x|−n x1, · · · , Cn(2− n) |x|−n xn

)
=Cn(2− n) |x|−n (x1, · · · , xn)
=Cn(2− n) |x|−n x

Find ν: Notice in the picture above that ν points in the same direction
as x, so ν = Cx for some C, and to make ν have length 1, we get:

Fact:

ν =
x

|x|

IMPORTANT: This formula for ν is only true for the ball!!!

And so
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∂Φ

∂ν
=DΦ · ν

=Cn(2− n) |x|−n x ·
(
x

|x|

)
=Cn(2− n) |x|−n

(
|x|2

|x|

)
=Cn(2− n) |x|1−n

=Cn(2− n)ε1−n On ∂B(0, ε)

=
1

n(n− 2)α(n)
(2− n)ε1−n

=
−1

nα(n)
ε1−n

Since we now know the notion of a normal derivative, we can now state
the correct integration by parts formula:

Integration by Parts:∫
U

(∆u) v =

∫
∂U

(
∂u

∂ν

)
v −

∫
U

Du ·Dv

5. Poisson’s Equation

Reading: Section 2.2.1b

Video: Poisson’s Equation

https://www.youtube.com/watch?v=o23hJ8JX-aY
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Now that we know how to solve −∆u = 0, how can we solve −∆u = f
where f is a given function?

Main Idea: “Multiply” Φ with f , but this time where multiplication
is convolution, that is

u = Φ ? f =

∫
Rn

Φ(x− y)f(y)dy

Naively we get:

∆u = ∆

(∫
Rn

Φ(x− y)f(y)dy

)
=

∫
Rn

(∆Φ) f = 0

But that is WRONG because Φ is very badly behaved at O.

Note: The following is handwavy and is just an overview (not a sub-
stitute) of the proof in the book. The main idea is to first put all the
derivatives on f because f is much nicer than Φ

∆u = ∆

(∫
Rn

Φ(x− y)f(y)dy

)
=

∫
Rn

Φ(y)∆f(x− y)

And then do some surgery, that is decomposing Rn as B(0, ε) (where
Φ is ill-behaved) and Rn\B(0, ε) (where Φ is well-behaved)
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Then decompose the above integral as:

∆u =

∫
Rn

Φ∆f =

∫
B(0,ε)

Φ∆f︸ ︷︷ ︸
Show small

+

∫
Rn\B(0,ε)

Φ∆f

For
∫
Rn\B(0,ε) Φ∆f now integrate by parts to get:

∆u =

∫
Rn\B(0,ε)

Φ∆f =

∫
∂B(0,ε)

Stuff︸ ︷︷ ︸
Show small

−
∫
Rn\B(0,ε)

DΦ ·Df

And finally, integrate by parts again in the second term to get:

∆u = −
∫
Rn\B(0,ε)

DΦ·Df = −
∫
∂B(0,ε)

f︸ ︷︷ ︸
Exactly what we want

+

∫
Rn\B(0,ε)

∆Φ︸︷︷︸
0

f = −
∫
∂B(0,ε)

f
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And you just show that the right-hand-side goes to −f , so you get
∆u = −f , so −∆u = f �
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