LECTURE 3: MEAN VALUE FORMULA AND CONSEQUENCES

Readings:

- Section 1 of the lecture notes on Change of Variables
- Section 2.2.2: Mean Value Formulas (page 25-26)
- Section 2.2.3a: Strong Maximum Principle, Uniqueness (page 27-28)
- Section 2.2.3f: Harnack's Inequality (pages 32-33)

This week is all about the mean value formula and its incredible consequences!

1. Review: Change of Variables

Video: What is a Jacobian? (This video doesn't cover exactly what's below, but it has the same motivation etc.)

Let me remind you how to do a change of variables from Math 2E. First, let's review u-sub from Math 2B so that you can really compare how similar the two techniques are.

Date: Monday, April 13, 2020.

Example:

Evaluate $\int_{1}^{2} e^{-x^{2}}(-2 x) d x$
(1) Let $u=-x^{2}$
(2) Endpoints: $u(1)=-1, u(2)=-4$.

So u turns $D=[1,2]$ into $D^{\prime}=[-1,-4]=[-4,-1]$.

(3) du: Beware of the absolute value! (makes sense, $d u$ should be positive)

$$
d u=\left|\frac{d u}{d x}\right| d x=|-2 x| d x=2 x d x \Rightarrow-2 x d x=-d u
$$

(4) Integrate

$$
\begin{aligned}
\int_{1}^{2} e^{-x^{2}}(-2 x) d x & =\int_{[1,2]} e^{-x^{2}}(-2 x) d x \\
& =\int_{D} e^{-x^{2}}(-2 x) d x \\
& =\int_{D^{\prime}} e^{u}(-d u) \\
& =-\int_{[-4,-1]} e^{u} d u \\
& =-\int_{-4}^{-1} e^{u} d u \\
& =e^{-4}-e^{-1}
\end{aligned}
$$

Now let's do the Math 2E version:

Example:

Show

$$
\int_{B(x, r)} u(y) d y=r^{n} \int_{B(0,1)} u(x+r z) d z
$$

(This is a key ingredient in the proof of the mean value formula below)
(1) Let

$$
z=\frac{y-x}{r}=\left(\frac{y_{1}-x_{1}}{r}, \frac{y_{2}-x_{2}}{r}, \cdots, \frac{y_{n}-x_{n}}{r}\right)=\left(z_{1}, \cdots, z_{n}\right)
$$

Then $y=x+r z$
(2) $z(B(x, r))=B(0,1)$, that is, z maps $B(x, r)$ to $B(0,1)$ (makes sense, the $-x$ in $y-x$ shifts the center from x to 0 and the $\frac{1}{r}$ makes the radius 1)

$$
d z=\underbrace{\frac{d z}{d y}}_{?} d y
$$

A natural analog of $\frac{d z}{d y}$ would be

$$
\frac{d z}{d y}=\left[\begin{array}{ccc}
\frac{\partial z_{1}}{\partial y_{1}} & \cdots & \frac{\partial z_{1}}{\partial y_{n}} \\
\vdots & & \vdots \\
\frac{\partial z_{n}}{\partial y_{1}} & \cdots & \frac{\partial z_{n}}{\partial y_{n}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{r} & \cdots & 0 \\
0 & \vdots & 0 \\
0 & \cdots & \frac{1}{r}
\end{array}\right]
$$

Except we need a scalar instead of a matrix.

Correct Answer:

$$
d z=\left|\operatorname{det}\left[\begin{array}{ccc}
\frac{1}{r} & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & \frac{1}{r}
\end{array}\right]\right| d y=\frac{1}{r^{n}} d y
$$

Therefore $d y=r^{n} d z$
(d) Finally, we then get:

$$
\int_{B(x, r)} u(y) d y=\int_{B(0,1)} u(x+r z) r^{n} d z
$$

2. The Mean Value Formula

Reading: Section 2.2.2: Mean Value Formulas (page 25-26)
Video: Laplace Mean Value Formula
The most important property of Laplace's equation!

Mean Value Formula:

If $\Delta u=0$, then for any x and $r>0$ we have

$$
\begin{gathered}
f_{B(x, r)} u(y) d y=u(x) \\
f_{\partial B(x, r)} u(y) d S(y)=u(x)
\end{gathered}
$$

In other words, the average value of u over any ball (or sphere) is the value at the center of the ball! In other words, it is easy to find the average value of u here.

Note: This only works for the ball, NOT for other surfaces!
Proof of (2): Fix x and define

$$
\phi(r)=f_{\partial B(x, r)} u(y) d S(y)=\frac{\int_{\partial B(x, r)} u(y) d S(y)}{|\partial B(x, r)|}
$$

Problem: We cannot directly differentiate this because the domain of integration $\partial B(x, r)$ depends on r.

Solution: Use the change of variables $z=\frac{y-x}{r}$ and using the technique of the previous problem, we get:

$$
\begin{aligned}
\phi(r) & =\frac{r^{n-1} \int_{\partial B(0,1)} u(x+r z) d S(z)}{|\partial B(x, r)|} \\
& =\frac{r^{n-1} \int_{\partial B(0,1)} u(x+r z) d S(z)}{n \alpha(n) x^{n-1}} \\
& =\frac{1}{n \alpha(n)} \int_{\partial B(0,1)} u(x+r z) d S(z)
\end{aligned}
$$

Note: We get r^{n-1} instead of r^{n} because $\partial B(x, r)$ is $n-1$ dimensional (before we had $B(x, r)$ which was n dimensional)

Since the domain doesn't depend on r, we can differentiate ϕ :

$$
\phi^{\prime}(r)=\frac{\int_{\partial B(0,1)} D u(x+r z) \cdot z d S(z)}{n \alpha(n)}
$$

Now change variables back: $y=x+r z$, which transforms $B(0,1)$ back into $B(x, r)$:

We then get

$$
\begin{aligned}
\phi^{\prime}(r) & =\frac{1}{n \alpha(n)} \int_{\partial B(x, r)} D u(y) \cdot \underbrace{\left(\frac{y-x}{r}\right)}_{\nu} \frac{1}{r^{n-1}} d S(y) \\
& =\frac{1}{n \alpha(n) r^{n-1}} \int_{\partial B(x, r)} D u(y) \cdot \nu d S(y) \\
& =\frac{1}{|\partial B(x, r)|} \int_{\partial B(x, r)} \frac{\partial u}{\partial \nu}
\end{aligned}
$$

Recall: Integration by parts

$$
\int_{U}(\Delta u) v d x=\int_{\partial U} \frac{\partial u}{\partial \nu} v-\int_{U} D u \cdot D v
$$

With $v=1$ this simply becomes

$$
\int_{U} \Delta u=\int_{\partial U} \frac{\partial u}{\partial \nu}
$$

Therefore:

$$
\phi^{\prime}(r)=\frac{1}{|\partial B(x, r)|} \int_{\partial B(x, r)} \frac{\partial u}{\partial \nu}=\frac{1}{|\partial B(x, r)|} \int_{\partial B(x, r)} \underbrace{\Delta u}_{0}=0
$$

Hence $\phi(r)=f_{\partial B(x, r)} u(y) d S(y)$ is constant, and letting $r \rightarrow 0$, we get

$$
f_{\partial B(x, r)} u(y) d S(y)=\phi(r)=\lim _{r \rightarrow 0} \phi(r)=u(x)
$$

(The last part uses continuity of u and I think is an exercise in the suggested HW)

Proof of (1): Much easier! Just use (2) and the polar coordinates formula!

$$
\begin{aligned}
\frac{\int_{B(x, r)} u(y)}{|B(x, r)|} & =\frac{1}{\alpha(n) r^{n}} \int_{0}^{r} \int_{\partial B(x, t)} u(y) d S(y) d t \\
& =\frac{1}{\alpha(n) r^{n}} \int_{0}^{r}\left(\frac{\int_{\partial B(x, t)} u(y)}{|\partial B(x, t)|}|\partial B(x, t)|\right) \\
& =\frac{1}{\alpha(n) r^{n}} \int_{0}^{r} u(x) n \alpha(n) t^{n-1} d t \quad \text { Using (2) } \\
& =\frac{1}{\alpha(n) r^{n}} u(x) n \alpha(n) \frac{r^{n}}{n} \\
& =u(x) \quad \square
\end{aligned}
$$

Note: In fact the mean value formula is equivalent to $\Delta u=0$ (see book)

3. Maximum Principle

Reading: Section 2.2.3a: Strong Maximum Principle, Uniqueness (page 27-28)

The rest of today is just about applications of the mean value formula, starting with the Maximum Principle

Maximum Principle:

If $\Delta u=0$, then
(1) Weak:

$$
\max _{\bar{U}} u=\max _{\partial U} u
$$

(but could be attained inside U)
(2) Strong: $\max _{\bar{U}} u$ is attained only on ∂U (unless u is constant)

From this, we can deduce uniqueness of solutions of Poisson's equation $-\Delta u=f$

See Proofs in the book

4. Positivity

Positivity:

Suppose u satisfies

$$
\left\{\begin{aligned}
\Delta u=0 & \text { in } U \\
u=g & \text { on } \partial U
\end{aligned}\right.
$$

Where $g \geq 0$ and $g \nexists 0$, that is g is positive somewhere
Then $u>0$ everywhere in U

Proof:

By the weak maximum principle (with min instead of max)

$$
\min _{\bar{U}} u=\min _{\partial U} u=\min _{\partial U} g \geq 0
$$

Hence $u \geq 0$.
But if $u\left(x^{\star}\right)=0$ for some $x^{\star} \in U$, then u has a minimum inside U, which implies $u \equiv 0$ in U (and hence in \bar{U} by continuity) and this implies $g \equiv 0 \Rightarrow \Leftarrow$

Awesome Application: Remember the interpretation of Laplace's equation in terms of Brownian Motion (from Week 1). Namely
$u(x)=$ Expected gain/loss starting at x

Now suppose U is a very weird domain and g is zero everywhere, except for a tiny point where it's positive (imagine there is a treasure there):

Then positivity says that $u>0$ everywhere, which implies that, no matter where you start, it not only possible to reach that treasure, but there's a positive probability of doing so! (Because if the probability of reaching the point were 0 , then the average value would be 0 as well since $g=0$ everywhere else)

5. Harnack's Inequality

Reading: Section 2.2.3f: Harnack's Inequality (pages 32-33)
Very strange statement, but it's kind of a regularizing effect of Laplace's Equation.

Note: $V \subset \subset U$ just means that there is some space (or wiggle room) between V and ∂U.

Harnack's Inequality:

The is a constant C depending only on V (and not on u) such that for all u, if $\Delta u=0$ and $u \geq 0$, then:

$$
\max _{V} u \leq C \min _{V} u
$$

Really think of C as just being a constant. For example, if V is a ball, think $C=5$.

What this is saying is that if the minimum of u is small, then the maximum of u is small too.

For example, say $C=5$ and the smallest value of u is 2 , this is saying that the largest value of u cannot be 100 because otherwise you'd get $100 \leq 5(2)=10$.

So harmonic functions generally don't look like this:

But rather like this:

(Again, see proof in the book)

