LECTURE 3: MEAN VALUE FORMULA AND
CONSEQUENCES

Readings:

e Section 1 of the lecture notes on Change of Variables
e Section 2.2.2: Mean Value Formulas (page 25-26)

e Section 2.2.3a: Strong Maximum Principle, Uniqueness (page
27-28)

e Section 2.2.3f: Harnack’s Inequality (pages 32-33)

This week is all about the mean value formula and its incredible con-
sequences!

1. REVIEW: CHANGE OF VARIABLES

Video: What is a Jacobian? (This video doesn’t cover exactly what’s
below, but it has the same motivation etc.)

Let me remind you how to do a change of variables from Math 2E.

First, let’s review u-sub from Math 2B so that you can really compare
how similar the two techniques are.

Date: Monday, April 13, 2020.


https://www.youtube.com/watch?v=SrYStw84T4o
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Evaluate [ e=*(-2z)dx

(1) Let u = -2

(2) Endpoints: u(1) =-1,u(2) = -4.

So u turns D =[1,2] into D' = [=1,=4] = [-4,-1].

u=-x*
D D'
L | LN L 1 Ny
L 1 4 L |
2 X -4 - u

(3) du: Beware of the absolute value! (makes sense, du should be
positive)

du

X

du = dx = |-2zx|dx = 2xdr = —2xdx = —du
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(4) Integrate

2
(-2w)do= [ e (-20)d
/16 (-2x)dx [1’2]6 (-2x)dx
= “*(—22)d.
/De (-2x)dx
_ u(_d
|, e"(=au)
:—f e'du
[_47_1]

Now let’s do the Math 2E version:

Show

dy = f d
[B(m)u(y) y=r B(O’l)u(aj+rz) z

(This is a key ingredient in the proof of the mean value formula below)

(1) Let

z = - ) 9 9

Yy-r (y1-T1 Y2-T2 Yo~ Tp\ _
= (21, 2n)
T T r T

Then y=x+7rz

(2) 2(B(z,r)) = B(0,1), that is, z maps B(x,r) to B(0,1) (makes
sense, the —x in y — x shifts the center from x to 0 and the %
makes the radius 1)
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y
Z =y-X
r
B(x,r) B(0,1)
d
dz = d—; dy

A natural analog of g—; would be

9z1 ., 9= 1 0
dz ayl ayn ; )
— = : c1=10 0
dy oz .. o 0 ... L
8yl ayn r

Except we need a scalar instead of a matrix.

Correct Answer:

dz = |det | : ‘| dy = —dy

Therefore dy = r"dz
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(8) Finally, we then get:

d :/ + "d
—/];(Iyr)u(y) Y B(Ojl)u(:c rz)r'dz

2. THE MEAN VALUE FORMULA
Reading: Section 2.2.2: Mean Value Formulas (page 25-26)

Video: Laplace Mean Value Formula

The most important property of Laplace’s equation!

Mean Value Formula:

If Au =0, then for any x and r > 0 we have

]g(x,r) u(y)dy = u(x)

Ty M)AS () = u()

In other words, the average value of u over any ball (or sphere) is the
value at the center of the balll In other words, it is easy to find the
average value of u here.

Note: This only works for the ball, NOT for other surfaces!

Proof of (2): Fix z and define


https://www.youtube.com/watch?v=lbm7gTuylOQ
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f@B(z,r)u(y)dS(y)
¢(r) = - u(y)dS(y) = OB (x.)]

Problem: We cannot directly differentiate this because the domain
of integration dB(x,r) depends on 7.

Solution: Use the change of variables z = == and using the technique
of the previous problem, we get:

rn-l faB(o,l) u(x +rz)dS(z)

or) = 0B (z,71)|
_MfaB(og) u(x +rz)dS(z)
B no(n)pzTt
1 u(z +1rz)dS(z2)

“na(n) o)

Note: We get r"~! instead of " because dB(z,r) is n—1 dimensional
(before we had B(x,r) which was n dimensional)

Since the domain doesn’t depend on r, we can differentiate ¢:

[33(071) Du(z +7rz)-2dS(2)

na(n)

¢'(r) =

Now change variables back: y = x + rz, which transforms B(0,1) back
into B(x,r):
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y

y = X+I7Z

Ny

B(0,1)
B(x,r)

We then get

1 - 1
)= [ puw) () s
’ —_———
1
:ncv(n)r”‘1 [3B(x,r) Du(y) -vdS(y)
1 ou

0B (z,7)| JoB@r) Ov
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[](Au)vdxsz o fDu-Dv

With v =1 this simply becomes

JRSE

Therefore:

1
/ — 7 _ Au =
@'(r) \8B($,7“)|.[83(x,r)8u 6B )] Josen 32"

Hence ¢(r) = J[aB(x - u(y)dS(y) is constant, and letting r — 0, we get

Fe, 1S @) = 9(0) = (1) = u(a)
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(The last part uses continuity of w and I think is an exercise in the
suggested HW)

Proof of (1): Much easier! Just use (2) and the polar coordinates
formulal

fB(xm)u(y) 1 r
[B(x,r)| :Oz(n)r”/(; faB(m)“(y)dS(y)dt

(et onen)

“a(n)rm 0B (x,1)|

:oz(”;)frn fo u(z)na(n)t"'dt  Using (2)
1 rr

_Oé(n)rnu(x)noz(n)g

=u(x) O

Note: In fact the mean value formula is equivalent to Au = 0 (see
book)

3. MAXIMUM PRINCIPLE
Reading: Section 2.2.3a: Strong Maximum Principle, Uniqueness
(page 27-28)

The rest of today is just about applications of the mean value formula,
starting with the Maximum Principle
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Maximum Principle:

If Au =0, then
(1) Weak:

maxu = maxu
T U

(but could be attained inside U)

(2) Strong: maxgu is attained only on QU (unless u is con-
stant)

From this, we can deduce uniqueness of solutions of Poisson’s equation

-Au=f

See Proofs in the book

4. POSITIVITY

Positivity:
Suppose u satisfies

Au=0 inU
u=g ondU

Where g >0 and g =0, that is g is positive somewhere

Then u > 0 everywhere in U
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ou max(u)

U

Proof:
By the weak maximum principle (with min instead of max)

minu = minw = ming > 0
U U oU

Hence u > 0.
But if u(z*) = 0 for some x* € U, then u has a minimum inside U,
which implies v = 0 in U (and hence in U by continuity) and this im-

plies g=0=><« [

Awesome Application: Remember the interpretation of Laplace’s
equation in terms of Brownian Motion (from Week 1). Namely

u(x) = Expected gain/loss starting at z
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Punishment: g(X*)

N

X
ou

Now suppose U is a very weird domain and g is zero everywhere, ex-
cept for a tiny point where it’s positive (imagine there is a treasure
there):

Treasure
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Then positivity says that v > 0 everywhere, which implies that, no
matter where you start, it not only possible to reach that treasure, but
there’s a positive probability of doing so! (Because if the probability
of reaching the point were 0, then the average value would be 0 as well
since g = 0 everywhere else)

5. HARNACK’S INEQUALITY
Reading: Section 2.2.3f: Harnack’s Inequality (pages 32-33)

Very strange statement, but it’s kind of a regularizing effect of Laplace’s
Equation.

Note: V cc U just means that there is some space (or wiggle room)
between V' and OU.

ouU

/N
WV
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Harnack’s Inequality:

The is a constant C' depending only on V (and not on w) such
that for all u, if Au =0 and u > 0, then:

maxu < C'minu
i 1%

Really think of C' as just being a constant. For example, if V' is a ball,
think C' = 5.

What this is saying is that if the minimum of v is small, then the
maximum of u is small too.

For example, say C' =5 and the smallest value of u is 2, this is saying
that the largest value of u cannot be 100 because otherwise you’d get

100 < 5(2) = 10.

So harmonic functions generally don’t look like this:

But rather like this:
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max u

/IM —

min u

(Again, see proof in the book)
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