
LECTURE 3: MEAN VALUE FORMULA AND
CONSEQUENCES

Readings:

● Section 1 of the lecture notes on Change of Variables

● Section 2.2.2: Mean Value Formulas (page 25-26)

● Section 2.2.3a: Strong Maximum Principle, Uniqueness (page
27-28)

● Section 2.2.3f: Harnack’s Inequality (pages 32-33)

This week is all about the mean value formula and its incredible con-
sequences!

1. Review: Change of Variables

Video: What is a Jacobian? (This video doesn’t cover exactly what’s
below, but it has the same motivation etc.)

Let me remind you how to do a change of variables from Math 2E.
First, let’s review u-sub from Math 2B so that you can really compare
how similar the two techniques are.

Date: Monday, April 13, 2020.
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https://www.youtube.com/watch?v=SrYStw84T4o
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Example:

Evaluate ∫
2
1 e

−x2(−2x)dx

(1) Let u = −x2

(2) Endpoints: u(1) = −1, u(2) = −4.

So u turns D = [1,2] into D′ =�����
[−1,−4] = [−4,−1].

(3) du: Beware of the absolute value! (makes sense, du should be
positive)

du = ∣
du

dx
∣dx = ∣−2x∣dx = 2xdx⇒ −2xdx = −du
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(4) Integrate

∫

2

1
e−x

2

(−2x)dx =∫
[1,2]

e−x
2

(−2x)dx

=∫
D
e−x

2

(−2x)dx

=∫
D′
eu(−du)

= − ∫
[−4,−1]

eudu

= − ∫

−1

−4
eudu

=e−4 − e−1

Now let’s do the Math 2E version:

Example:

Show

∫
B(x,r)

u(y)dy = rn∫
B(0,1)

u(x + rz)dz

(This is a key ingredient in the proof of the mean value formula below)

(1) Let

z =
y − x

r
= (

y1 − x1
r

,
y2 − x2
r

,⋯,
yn − xn
r

) = (z1,⋯, zn)

Then y = x + rz

(2) z(B(x, r)) = B(0,1), that is, z maps B(x, r) to B(0,1) (makes
sense, the −x in y − x shifts the center from x to 0 and the 1

r
makes the radius 1)
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dz =
dz

dy
¯
?

dy

A natural analog of dz
dy would be

dz

dy
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂z1
∂y1

⋯ ∂z1
∂yn

⋮ ⋮
∂zn
∂y1

⋯ ∂zn
∂yn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
r ⋯ 0
0 ⋮ 0
0 ⋯ 1

r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Except we need a scalar instead of a matrix.

Correct Answer:

dz =

RRRRRRRRRRRRRR

det

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
r ⋯ 0
⋮ ⋮

0 ⋯ 1
r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRR

dy =
1

rn
dy

Therefore dy = rndz
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(3)(4) Finally, we then get:

∫
B(x,r)

u(y)dy = ∫
B(0,1)

u(x + rz)rndz

2. The Mean Value Formula

Reading: Section 2.2.2: Mean Value Formulas (page 25-26)

Video: Laplace Mean Value Formula

The most important property of Laplace’s equation!

Mean Value Formula:

If ∆u = 0, then for any x and r > 0 we have

⨏
B(x,r)

u(y)dy = u(x)

⨏
∂B(x,r)

u(y)dS(y) = u(x)

In other words, the average value of u over any ball (or sphere) is the
value at the center of the ball! In other words, it is easy to find the
average value of u here.

Note: This only works for the ball, NOT for other surfaces!

Proof of (2): Fix x and define

https://www.youtube.com/watch?v=lbm7gTuylOQ
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φ(r) = ⨏
∂B(x,r)

u(y)dS(y) =
∫∂B(x,r) u(y)dS(y)

∣∂B(x, r)∣

Problem: We cannot directly differentiate this because the domain
of integration ∂B(x, r) depends on r.

Solution: Use the change of variables z = y−x
r and using the technique

of the previous problem, we get:

φ(r) =
rn−1 ∫∂B(0,1) u(x + rz)dS(z)

∣∂B(x, r)∣

=
���rn−1 ∫∂B(0,1) u(x + rz)dS(z)

nα(n)���rn−1

=
1

nα(n) ∫∂B(0,1)
u(x + rz)dS(z)

Note: We get rn−1 instead of rn because ∂B(x, r) is n−1 dimensional
(before we had B(x, r) which was n dimensional)

Since the domain doesn’t depend on r, we can differentiate φ:

φ′(r) =
∫∂B(0,1)Du(x + rz) ⋅ zdS(z)

nα(n)

Now change variables back: y = x + rz, which transforms B(0,1) back
into B(x, r):
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We then get

φ′(r) =
1

nα(n) ∫∂B(x,r)
Du(y) ⋅ (

y − x

r
)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
ν

1

rn−1
dS(y)

=
1

nα(n)rn−1 ∫∂B(x,r)
Du(y) ⋅ νdS(y)

=
1

∣∂B(x, r)∣ ∫∂B(x,r)

∂u

∂ν
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Recall: Integration by parts

∫
U
(∆u)vdx = ∫

∂U

∂u

∂ν
v − ∫

U
Du ⋅Dv

With v = 1 this simply becomes

∫
U

∆u = ∫
∂U

∂u

∂ν

Therefore:

φ′(r) =
1

∣∂B(x, r)∣ ∫∂B(x,r)

∂u

∂ν
=

1

∣∂B(x, r)∣ ∫∂B(x,r)
∆u
°
0

= 0

Hence φ(r) = ⨏∂B(x,r) u(y)dS(y) is constant, and letting r → 0, we get

⨏
∂B(x,r)

u(y)dS(y) = φ(r) = lim
r→0

φ(r) = u(x)
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(The last part uses continuity of u and I think is an exercise in the
suggested HW)

Proof of (1): Much easier! Just use (2) and the polar coordinates
formula!

∫B(x,r) u(y)

∣B(x, r)∣
=

1

α(n)rn ∫
r

0
∫
∂B(x,t)

u(y)dS(y)dt

=
1

α(n)rn ∫
r

0
(
∫∂B(x,t) u(y)

∣∂B(x, t)∣
∣∂B(x, t)∣)

=
1

α(n)rn ∫
r

0
u(x)nα(n)tn−1dt Using (2)

=
1

α(n)rn
u(x)nα(n)

rn

n

=u(x) �

Note: In fact the mean value formula is equivalent to ∆u = 0 (see
book)

3. Maximum Principle

Reading: Section 2.2.3a: Strong Maximum Principle, Uniqueness
(page 27-28)

The rest of today is just about applications of the mean value formula,
starting with the Maximum Principle
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Maximum Principle:

If ∆u = 0, then

(1) Weak:
max
U

u = max
∂U

u

(but could be attained inside U)

(2) Strong: maxU u is attained only on ∂U (unless u is con-
stant)

From this, we can deduce uniqueness of solutions of Poisson’s equation
−∆u = f

See Proofs in the book

4. Positivity
Positivity:

Suppose u satisfies

{
∆u =0 in U

u =g on ∂U

Where g ≥ 0 and g�≡ 0, that is g is positive somewhere

Then u > 0 everywhere in U
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Proof:

By the weak maximum principle (with min instead of max)

min
U
u = min

∂U
u = min

∂U
g ≥ 0

Hence u ≥ 0.

But if u(x⋆) = 0 for some x⋆ ∈ U , then u has a minimum inside U ,
which implies u ≡ 0 in U (and hence in U by continuity) and this im-
plies g ≡ 0⇒⇐ �

Awesome Application: Remember the interpretation of Laplace’s
equation in terms of Brownian Motion (from Week 1). Namely

u(x) = Expected gain/loss starting at x
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Now suppose U is a very weird domain and g is zero everywhere, ex-
cept for a tiny point where it’s positive (imagine there is a treasure
there):
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Then positivity says that u > 0 everywhere, which implies that, no
matter where you start, it not only possible to reach that treasure, but
there’s a positive probability of doing so! (Because if the probability
of reaching the point were 0, then the average value would be 0 as well
since g = 0 everywhere else)

5. Harnack’s Inequality

Reading: Section 2.2.3f: Harnack’s Inequality (pages 32-33)

Very strange statement, but it’s kind of a regularizing effect of Laplace’s
Equation.

Note: V ⊂⊂ U just means that there is some space (or wiggle room)
between V and ∂U .



14 LECTURE 3: MEAN VALUE FORMULA AND CONSEQUENCES

Harnack’s Inequality:

The is a constant C depending only on V (and not on u) such
that for all u, if ∆u = 0 and u ≥ 0, then:

max
V

u ≤ Cmin
V
u

Really think of C as just being a constant. For example, if V is a ball,
think C = 5.

What this is saying is that if the minimum of u is small, then the
maximum of u is small too.

For example, say C = 5 and the smallest value of u is 2, this is saying
that the largest value of u cannot be 100 because otherwise you’d get
100 ≤ 5(2) = 10.

So harmonic functions generally don’t look like this:

But rather like this:
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(Again, see proof in the book)


	1. Review: Change of Variables
	2. The Mean Value Formula
	3. Maximum Principle
	4. Positivity
	5. Harnack's Inequality

