
LECTURE 4: MORE CONSEQUENCES AND ENERGY
METHODS

Readings:

● (Optional) Section 2.2.3c: Local Estimates For Harmonic Func-
tions (page 29, only the case k = 1)

● Section 2.2.3d: Liouville’s Theorem (page 30)

● Appendix C.5: Convolution and Smoothing (pages 713-714,
only the definitions)

● Section 2.2.3b: Regularity (page 28)

● Section 2.2.5: Energy Methods (pages 41-43)

● Calculus of Variations (Section 6 in those notes)

Reminder: This week is all about more consequences of Laplace’s
equation, as well as an introduction to energy methods.

1. Liouville’s Theorem

Readings: Section 2.2.3d: Liouville’s Theorem (page 30) and also
(Optional) Section 2.2.3c: Local Estimates For Harmonic Functions
(page 29, only the case k = 1)

Date: Monday, April 13, 2020.
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The following result seems almost too good to be true (but it is good
AND it is true):

Liouville’s Theorem:

If ∆u = 0 in Rn and u is bounded, then u must be constant!

In other words, any (non-constant) harmonic function must blow up
somewhere (possibly at ∞). For for instance, the fact that Φ(x) = C

∣x∣
n−2

blows up at 0 isn’t an anomaly, but a feature that most harmonic func-
tions share!

Example: In 2 dimensions, u(x, y) = x2−y2 solves Laplace’s equation,
and notice that u is unbounded! Similarly with u(x, y) = ex sin(y)

Note: If this theorem sounds familiar to you, then you’re correct! In
fact, in Complex Analysis, Liouville’s Theorem says that if f(z) is a
bounded holomorphic function, then f is constant. And this is not a
surprise because remember that if f is holomorphic, then Re(f) and
Im(f) solve Laplace’s equation!

To prove this, we need an estimate in section 2.2.3c, which you can
prove in return prove using the mean-value formula. I cannot empha-
size how important estimates are in PDE. They are the main tools
that allow us to prove cool PDE facts (like here to prove Liouville’s
Theorem)

Definition:

∥u∥L1
(U) = ∫

U
∣u(x)∣dx
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(Tells you how ‘big’ u is, but in terms of integrals)

Decay Estimate:

If ∆u = 0, then

∣Du(x)∣ ≤
√
nC

rn+1
∥u∥L1B(x,r)

(See proof in the book)

Intuitively: This estimate is saying that in n = 1 dimensions, Du = u′
decays at most like 1

r2 , in 2 dimensions, Du decays at most like 1
r3 , and

in 3 dimensions, Du decays at most like 1
r4 etc. So Du must be small

if r is large, and no bigger than C
rn+1 .

Proof of Liouville: Suppose u is bounded, that is there is some C > 0
such that ∣u(y)∣ ≤ C for all y.

Then, first of all:

∥u∥L1
(B(x,r)) =∫

B(x,r)
∣u(y)∣
²

≤C

dy

≤C ∫
B(x,r)

1dy

=C ∣B(x, r)∣
=Cα(n)rn

Therefore, by our estimate:
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∣Du(x)∣ ≤C
√
n

rn+1
∥u∥L1B(x,r)

≤C
√
n

rn+1
Cα(n)rn

=C
√
nα(n)
r

(Different C)

→0 (As r →∞)

Hence Du(x) = 0, and so u is constant �

2. Mollifiers

Reading: Appendix C.5: Convolution and Smoothing (pages 713-714,
only the definitions)

Main Idea: Given a WILD function f , is it possible to approximate
it by a SMOOTH function f ε that is “close” to f? (whatever that
means)
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The amazing fact is that we can do this, using convolution (= analysis
multiplication). First we need a super smooth function:

STEP 1: Bump Function

Definition:

η(x) =
⎧⎪⎪⎨⎪⎪⎩

Ce
1

∣x∣2−1 If ∣x∣ < 1

0 If ∣x∣ ≥ 1

This is called a bump function. C is a constant such that ∫ η(x)dx = 1.

STEP 2: Spike it up! (= Make the bump function high and thin)

Definition:

ηε(x) = 1

εn
η (x

ε
)

For instance, if η = 0.01, then ηε(x) = 100η(100x)
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(The 1
ε

n
factor is there so that the integral of ηε is the same as the

integral of η). Notice in fact that as ε → 0, then ηε → δ0, so the next
result shouldn’t be surprising!

STEP 3: Mollifier

Given f (WILD), define:

Mollifier:

f ε(x) = ηε ⋆ f = ∫ ηε(y)f(x − y)dy

Facts:

(1) f ε ∈ C∞ for all ε

(2) f ε → f pointwise as ε→ 0

Why? The precise proofs are in the book, but intuitively (1) follows
because:

(f ε)′ = (∫ ηε(y)f(x − y))
′

= ∫ (ηε(y))′ f(x − y)
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Notice that all the derivatives fall on ηε, so since ηε is infinitely differ-
entiable, so is f ε

And (2) follows because ηε → δ0 and therefore

f ε = f ⋆ ηε → f ⋆ δ0 = f(x)

But of course all of this is non-rigorous, and you should really check
out the book (if you want) to see hwo to make those proofs rigorous

3. Smoothness

Reading: Section 2.2.3b: Regularity (page 28)

Using mollifiers and the mean value formula, you can then show a re-
ally beautiful and unexpected result:

Smoothness:

If u ∈ C2(U) solves ∆u = 0, then u ∈ C∞(U)

In other words, any solution of ∆u = 0 is INFINITELY differentiable,
wow!!!

The main idea is to show, using the mean-value formula, that u must
be equal to its mollifier uε for all ε. Since uε is C∞ (by the previous
section), it follows that u must be C∞. The details of the proof are in
the book.

4. Energy Methods

Reading: Section 2.2.5: Energy Methods (pages 41-43)
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There are two important classes of methods in PDEs:
(1) Maximum Principle Methods, which we’ve seen last time

with uniqueness and positivity

(2) Energy Methods, which are based on integration by parts
(see below)

Here’s an example of a result that you can prove using energy methods

Uniqueness:

There exists at most one solution of

{
−∆u =f (in U)

u =g (on ∂U)

Proof: Let u and v be two solutions, and let w = u− v, then w solves:

{
−∆w =0

w =0

Energy Method: Multiply −∆w by a clever function (here w) and
integrate by parts:



LECTURE 4: MORE CONSEQUENCES AND ENERGY METHODS 9

∫
U
( −∆w
²

0

)w IBP= ∫
∂U
−(∂w

∂ν
) w®

0

+∫
U
Dw ⋅Dw

=∫
U
∣Dw∣2

Therefore ∫U ∣Dw∣2 = 0 but this implies Dw ≡ 0 so w ≡ C. But since
w = 0 on ∂U , this implies that C = 0, so w ≡ 0 everywhere.

Hence w = u − v ≡ 0, so u ≡ v �

Note: The choice of multiplying by w seems a bit random, and it is!
In fact, a lot of modern PDE research is devoted to simply figuring out
which function to multiply your PDE with (Here w) to get an inter-
esting result!

5. Dirichlet’s Principle

Video: Calculus of Variations (doesn’t cover exactly the same mate-
rial, but it’s a good introduction)

As a further example of energy methods, let’s discuss an elegant re-
sult which connects Poisson’s equation with minimizers of an energy
(which explains why this is called an energy method).

Definition:

I[w] = ∫
U

1

2
∣Dw∣2 −wf

https://www.youtube.com/watch?v=us3iqmv_lbM


10 LECTURE 4: MORE CONSEQUENCES AND ENERGY METHODS

This is called the energy functional. Notice that, in terms of physics,
this is the sum of the kinetic energy 1

2( Speed 2) and the potential en-
ergy −wf (Minus because the force is pointing downwards)

That said, w is not a random function, but needs to be part of an
admissible class:

Definition:

A = {w ∣ w = g on ∂U }

That is, only focus on functions that are equal to g on ∂U (where g is
a fixed function)

Dirichlet’s Principle:

u solves −∆u = f ⇔ u minimizes I[u]

So among all the functions w ∈ A, it’s really u that makes I[w] the
smallest. So the energy profile of I really looks as follows:
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For the proof, again see the book. It’s a very beautiful proof, in my
opinion, one of the most beautiful proofs in the book!

Main Idea:

(⇒) Use Integration by Parts

(⇐) Consider i(τ) = I[u + τv].

Notice that i is a function of one real variable τ .
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Moreover, i has a minimum precisely at τ = 0 because I has a minimum
at u = u+0v but doesn’t have a minimum at u+ τv, as in the following
picture

Therefore from Math 2A, you get i′(0) = 0, and from this you can
deduce that u solves −∆u = f (see book)

What makes this so elegant is that you transform a complicated energy
problem into an easy calculus problem!

6. Calculus of Variations

Dirichlet’s Principle is a special case of calculus of variations (one of
my specializations actually). In layman’s terms, Calculus of Variations
relates solutions of PDEs with minimizers of energies.

Here, for instance, we related the Dirichlet energy I[u] = ∫U
1
2 ∣Du∣

2−uf
with the Poisson equation −∆u = f .
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In fact, this is always true, and is the cornerstone of the field of calculus
of variations:

Fact:

If u minimizes the energy I[u], then u solves a PDE, called the
Euler-Lagrange equation

Example:

If I[u] = ∫ 1
2 ∣Du∣

2−uf , then the Euler-Lagrange equation is −∆u =
f

In practice, it’s HARD to solve a PDE, but EASY to minimize an
energy, so IF you can write a PDE as a minimizer of an energy, then
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it’s GOOD and the PDE is called VARIATIONAL.

And variational PDEs are good because it means you actually have a
shot at solving it; there’s a well-established theory of minimizers.

Example:

The minimal surface PDE is

n

∑
i=1

⎛
⎜
⎝

uxi√
1 + ∣Du∣2

⎞
⎟
⎠
xi

= 0

As horrible as it sounds, it’s actually variational! u is actually the
minimizer of

I[u] = ∫
U

√
1 + ∣Du∣2dx

Which is much easier because ∫
√

1 + ∣Du∣2 is just the surface area of
the graph of u !
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So instead of solving the PDE, all you have to figure out is: Which
graphs (with given boundary conditions) have the smallest surface
area? Like a soap film for instance.

Note: The following Wiki article has beautiful pictures of minimal
surfaces. Check it out if you want to be amazed: Minimal Surfaces.
(Click on each example for a picture)

Note: We’ll see energy methods again with the heat equation and the
wave equation, so you can really see how powerful this class of methods
is.

Congratulations, we’re officially done with Laplace’s equation! In the
next 3 lectures, we’ll discuss the heat equation.

https://en.wikipedia.org/wiki/Minimal_surface#Examples
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