
LECTURE 5: THE HEAT EQUATION

Readings:

• Physical Interpretation of the heat equation (page 44)

• Applications of the Heat Equation (section 2 below)

• Section 2.3.1a: Derivation of the Fundamental Solution (pages
45-46)

• Gaussian Integral (section 4 below)

• Section 2.3.1b: Initial-Value Problem (pages 47-49)

In the next 3 weeks, we’ll talk about the heat equation, which is a close
cousin of Laplace’s equation. In fact, both of them share very similar
properties

Heat Equation:

ut = ∆u

1. Derivation of the Heat Equation

Reading: Physical Interpretation of the heat equation (page 44)

The derivation of the heat equation is very similar to the derivation of
Laplace’s equation (The derivation of Laplace’s equation can be found
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in this video).

For Laplace’s equation, we considered a fluid F in equilibrium, mean-
ing that

∫
∂V F · dν = 0 and used the divergence theorem.

Here the difference is that the fluid is not in equilibrium any more, but
instead evolves according to the net flux, meaning that:

d

dt

∫
V

udx︸ ︷︷ ︸
Time Evolution

= −
∫
∂V

F · dν︸ ︷︷ ︸
Net Flux

But just as before, using the divergence theorem trick and assuming
F = −aDu, we ultimately obtain

ut = a∆u

Which is the heat equation for a = 1.

2. Applications of the Heat Equation

Just like with Laplace, there are many beautiful applications of the
heat equation:

(1) Particle Diffusion: u(x, t) is the temperature of a metal plate
at position x and time t.

https://youtu.be/QU1R799wyMg


LECTURE 5: THE HEAT EQUATION 3

Remarks:

(i) Compare this with the solution u(x) of Laplace’s equation,
which gave the temperature of a metal plate at x, but after
a loooong time.

(ii) If u is a chemical density of a particle, then u(x, t) = chem-
ical concentration of the particle at x and time t.

(iii) Sometimes, the heat equation is also called the diffusion
equation, measures how a particle diffuses (think for in-
stance as putting a blue dye in a glass of water)

(2) Chemical Reactions: Can model a simple chemical reaction
A
 B with a system of heat equations. In fact, that’s what my
PhD research was all about! Feel free to check out the following
video in case you’re interested: The PDE that gave me the PhD.

(3) Brownian Motion: Remember the example with Laplace about
Brownian motion and hitting a wall? There’s a fancier version
with the heat equation.

https://www.youtube.com/watch?v=HvLScjQlCV0
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Suppose you start at x, do your usual Brownian motion, and at
a fixed time t, I tell you to stop. Then you’re at the point x?,
and I give you a reward g (x?)

Again, this is a random event, so it makes sense to take the
average/expected value.
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Let u(x, t) = Average (= Expected) gain/loss at time t starting
at x

Then ut = ∆u

(4) Schrödinger’s Equation: ut = i∆u, which is the foundation
of quantum mechanics

(5) Finance: The Black-Scholes equation pricing model, which is
used to predict the stock market is a Stochastic (= Random)
Differential Equation that can be transformed into the heat
equation

(6) Used in Machine Learning

(7) Geometry: The Ricci Flow is a heat equation on surfaces,
which Perelman used to solve the Poincaré Conjecture

(8) Fourier Series: The Heat Equation was the equation Fourier
studied when he discovered his series!

3. Fundamental Solution

Readings: Section 2.3.1a: Derivation of the Fundamental Solution
(pages 45-47)

Video: Fundamental Solution of the Heat Equation

Motivation: In ∆u = 0, the quantity |x|2 = (x1)
2 + · · ·+(xn)

2 played
an important role. And in fact radial solutions satisfy |x|2 = Constant.

https://www.youtube.com/watch?v=kFX1K7vO8Xc
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By analogy, in ut = ∆u, the quantity t = |x|2 might seem to play a
role. But:

t = |x|2 ⇒ |x|
2

t
= 1⇒

(
|x|√
t

)2

= 1

First Guess: Guess u(x, t) = v
(
x√
t

)
. This doesn’t quite work, be-

cause it turns out that u blows up near t = 0.

STEP 1: Better Guess:

u(x, t) =
1

t
n
2

v

(
x√
t

)
For some v = v(y) : Rn → R TBA The following result seems almost
too good to be true (but it is good AND it is true):

Plug the above formulation into the PDE ut = ∆u to get(n
2

)
v +

1

2
Dv · y + ∆v = 0

This is GOOD in the sense that there’s no more t.

But this is also BAD in the sense that it’s still a PDE!

STEP 2: Just like for Laplace, guess v is radial, that is v(y) =
w(|y|) = w(r) for some w : R+ → R.

Then plugging this formulation in the PDE above, we get:

1

2
(w′r + wn) + w′′ +

(
n− 1

r

)
w′ = 0
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And the beautiful thing is that we can explicitly solve it!

STEP 3: Solve the above ODE, which gives

w(r) = Ce−
r2

4

Therefore:

v(y) = w(|y|) = Ce−
|y|2
4

Hence

u(x, t) =
1

t
n
2

v

(
x√
t

)
=
C

t
n
2

e−
|x|2
4t

Which ultimately gives the fundamental solution:

Fundamental Solution of the Heat Equation:

Φ(x, t) =
1

(4πt)
n
2

e−
|x|2
4t

Note: The constant 1

(4πt)
n
2

is chosen so that for all t,∫
Rn

Φ(x, t)dx = 1

So the fundamental solution has constant mass.

4. Gaussian Integral

Video: Gaussian Integral

https://www.youtube.com/watch?v=kpmRS4s6ZR4
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Video: Gaussian Integral Playlist

Video: Gauss Cubed

The fact that Φ(x, t) has integral 1 relies on the following beautiful
result due to Gauss

Gaussian Integral: ∫ ∞
−∞

e−x
2

dx =
√
π

Proof: Let I =
∫∞
−∞ e

−x2dx ≥ 0

But also I =
∫∞
−∞ e

−y2dy
(doesn’t matter which variable we’re using; potato potahto)

Multiply:

I2 =(I)(I)

=

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
=

∫ ∞
−∞

(∫ ∞
−∞

e−x
2

dx

)
e−y

2

dy

=

∫ ∞
−∞

∫ ∞
−∞

e−x
2

e−y
2

dxdy

=

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2)dxdy

https://www.youtube.com/playlist?list=PLJb1qAQIrmmCgLyHWMXGZnioRHLqOk2bW
https://www.youtube.com/watch?v=Cj6rOLgN9_M
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=

∫ 2π

0

∫ ∞
0

e−r
2

rdrdθ

=2π

∫ ∞
0

re−r
2

dr

=2π

[(
−1

2

)
e−r

2

]r=∞
r=0

(u− sub : u = −r2)

=2π

(
−1

2
e−∞ +

1

2
e0
)

=2π

(
1

2

)
=π

I2 = π ⇒ I =
√
π (since I > 0)

Answer:

∫ ∞
−∞

e−x
2

dx =
√
π

Note: Check out this awesome playlist for 12 ways of evaluating this
integral: Gaussian Integral 12 Ways

Note: For a crazy spherical coordinates version, check out: Gauss
Cubed

Corollary: ∫
Rn

Φ(x, t)dx = 1

Proof:

https://www.youtube.com/watch?v=HcneBkidSDQ&list=PLJb1qAQIrmmCgLyHWMXGZnioRHLqOk2bW
https://www.youtube.com/watch?v=Cj6rOLgN9_M
https://www.youtube.com/watch?v=Cj6rOLgN9_M
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∫
Rn

Φ(x, t)dx =
1

(4πt)
n
2

∫
Rn
e−
|x|2
4t dx

=
1

(4πt)
n
2

∫
Rn
e−

(x1)
2+(x2)

2+···+(xn)
2

4t dx

=
1

(4πt)
n
2

∫
Rn
e−

(x1)
2

4t −
(x2)

2

4t −···−
(xn)

2

4t dx1dx2 . . . dxn

=
1

(4πt)
n
2

(∫ ∞
−∞

e−
(x1)

2

4t dx1

)
. . .

(∫ ∞
−∞

e−
(xn)

2

4t dxn

)
=

1

(4πt)
n
2

(√
4t

∫ ∞
−∞

e−(u1)
2

du1

)
. . .

(√
4t

∫ ∞
−∞

e−(un)
2

dun

)
=

1

(4πt)
n
2

(√
4t
)n(∫ ∞

−∞
e−u

2

du

)n
=

1

(4πt)
n
2

(√
4t
)n (√

π
)n

=

(√
4πt
)n(√

4πt
)n

=1

Note: In the middle, we used the u-sub u1 = x1√
4π

, u2 = x2√
4π

etc. And

in the step afterwards we used that all the n integrals are the same
and equal to

∫∞
−∞ e

−u2du =
√
π

5. Initial Value Problem

Reading: Section 2.3.1b: Initial Value Problem (pages 47-48)

Video: Initial-Value Problem

https://youtu.be/Yv0kNSyMBZQ
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Now suppose we would like to solve the heat equation with an initial
condition: {

ut −∆u =0

u(x, 0) =g(x)

Where g(x) is given.

Motivation: To solve −∆u = f , we used

u = Φ ? f =

∫
Rn

Φ(x− y)f(y)dy

The same thing works here:

Initial Value Problem:

u(x, t) = Φ ? g =

∫
Rn

Φ(x− y, t)g(y)dy

Solves the problem above

Except we have to be more precise by what we mean by u(x, 0) since
technically the fundamental solution is not defined at 0
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Claim 1: u ∈ C∞(Rn × (0,∞))

This is not a problem at all, because for every t > 0, we can differentiate
the above solution. For example,

ux1 =

(∫
Rn

Φ(x− y, t)g(y)dy

)
x1

=

∫
Rn

Φx1(x− y, t)g(y)dy

(Technically, we used the Dominated Convergence Theorem trick from
Lecture 2)

And since Φ is infinitely differentiable (and decays fast to 0), it follows
that u is infinitely differentiable

Claim 2: ut = ∆u (if t > 0)

Also not a problem, since

ut −∆u =

∫
Rn

(Φt −∆Φ) g =

∫
0g = 0

Claim 3: lim(x,t)→(x0,0) u(x, t) = g(x0)
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In other words, u(x0, 0) = g(x0) (but the above is more rigorous)

This is not obvious, since Φ blows up near 0. The idea is to reason
just like we did for Poisson’s equation, by doing a little bit of surgery
near x0.

Main Idea: Show that if |x− x0| and |t| are small, then
∣∣u(x, t)− g(x0)

∣∣
is small.

STEP 1: We can write:

∣∣u(x, t)− g(x0)
∣∣ ≤∫

B(x0,δ)

Φ(x− y, t)
∣∣g(y)− g(x0)

∣∣ dx
+

∫
Rn\B(x0,δ)

Φ(x− y, t) |g(y)− g(x)| dy
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Even though the B(x0, δ) term is BAD, one can show that it is very
small, < ε, therefore we only need to study the second term.

STEP 2:

∫
Rn\B(x0,δ)

Φ(x− y, t) |g(y)− g(x)|︸ ︷︷ ︸
≤C

dy ≤C
∫
Rn\B(x0,δ)

Φ(x− y, t)dy

=C

∫
Rn\B(x0,δ)

Φ(y − x, t)dy

(The last step is because Φ is even, so Φ(x− y, t) = Φ(y − x, t))

Idea: IF we had Φ(y−x0, t) instead of Φ(y−x, t), then we could do a
change of variables which transforms the ballB(x0, δ) intoB(0, Blah ),
which is much nicer.

STEP 3: Geometric Lemma

For this, we need a geometric lemma:
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Geometric Lemma:

If
∣∣x− x0∣∣ < δ

2 and
∣∣y − x0∣∣ > δ, then

∣∣y − x0∣∣ < 2 |y − x|

What this is saying is that if x and x0 are close together, and y is far
away from x0, then it could happen that

∣∣y − x0∣∣ is bigger than |y − x|.
But this is saying that

∣∣y − x0∣∣ not much bigger than |y − x|, it can
never be more than twice as big as |y − x|

In other words, it could happen that y is further away from x0 than
from x, but y cannot be more than twice as much away from x0 than
from x (which makes sense since x and x0 are close)

Proof:

∣∣y − x0∣∣ ≤ |y − x|+ ∣∣x− x0∣∣︸ ︷︷ ︸
< δ

2

< |y − x|+ δ

2
< |y − x|+ y − x0

2
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Hence, solving for
∣∣y − x0∣∣ in the above equation, we get 1

2

∣∣y − x0∣∣ <
|y − x|, that is

∣∣y − x0∣∣ < 2 |y − x| �

STEP 4: Now going back to C
∫
Rn\B(x0,δ) Φ(y − x, t)dy.

In particular, since we now know that |y − x| ≥ 1
2

∣∣y − x0∣∣, then

Φ(y − x, t) =
C

t
n
2

e−
|y−x|2

4t ≤ C

t
n
2

e−
|y−x0|2

4(4t =
C

t
n
2

e−
|y−x0|2

16t

We obtain:

C

∫
Rn\B(x0,δ)

Φ(y − x, t)dy ≤C
t
n
2

∫
Rn\B(x0,δ)

e−
|y−x0|2

16t

≤2nπ
n
2

∫
Rn\B(0, δ√

t
)

e−|z|
2

dz

(Here we used the promised change of variables z = y−x0√
16t

)

STEP 5: Finally, we can write the above integral as

2nπ
n
2

∫
Rn

1Rn\B(0, δ√
t
)e
−|z|2dz

Now since δ√
t
→ ∞ as t goes to 0+, the function 1Rn\B(0, δ√

t
) converges

pointwise to 0, and moreover the integral is dominated by
∫
Rn e

−|z|2dz <
∞, hence by the dominated convergence theorem,∫

Rn\B(0, δ√
t
)

e−|z|
2

dz → 0

And can be made < ε if t is small enough.
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STEP 6: So, combined with STEP 1, we then get∣∣u(x, t)− g(x0)
∣∣ < 2ε �


	1. Derivation of the Heat Equation
	2. Applications of the Heat Equation
	3. Fundamental Solution
	4. Gaussian Integral
	5. Initial Value Problem

