Math 453 - Homework 6

Peyam Tabrizian

Friday, April 7, 2017

This assignment is due on Friday, April 7, at 11:50 AM (after spring break)
Reading: Sections 2.3.2, 2.3.3 (skip (c)), 2.3.4.
Chapter 2: Additional Problem, 16, 17

Additional Problem: [Method of odd reflections] In the case $n=1$, consider the following heat equation on the half-line

$$
\left\{\begin{array}{c}
u_{t}-u_{x x}=0 \text { in }(0, \infty) \times(0, \infty) \\
u(x, 0)=f(x) \text { on }(0, \infty) \times\{t=0\} \\
u(0, t)=0 \text { on }\{x=0\} \times(0, \infty)
\end{array}\right.
$$

where $f=f(x)$ is a given function. Show that

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{0}^{\infty}\left(e^{-\frac{(x-y)^{2}}{4 t}}-e^{-\frac{(x+y)^{2}}{4 t}}\right) f(y) d y
$$

Hint: Consider the odd extension $\bar{f}(x)$ of f defined by

$$
\bar{f}(x)= \begin{cases}-f(-x) & \text { if } x<0 \\ 0 & \text { if } x=0 \\ f(x) & \text { if } x>0\end{cases}
$$

Then solve the PDE

$$
\left\{\begin{array}{c}
u_{t}-u_{x x}=0 \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=\bar{f}(x) \text { on } \mathbb{R} \times\{t=0\}
\end{array}\right.
$$

Then write the solution you found in terms of f, and finally use a change of variables. Make sure to check that the solution you found satisfies the original PDE!

Hint for 16: I personally find it easier to define $u_{\epsilon}=u+\epsilon|x|^{2}$ and proceed like in Problem 4 in Chapter 2. Again, recall the true second derivative test: If a function $v(x, t)$ attains a maximum at an interior point (x, t), then $\Delta v \leq 0$ at (x, t) and $v_{t}=0$ at (x, t) (because of critical point-ness). Beware that U_{T} also includes the top; in that case you still have $\Delta v \leq 0$, but this time $v_{t} \geq 0$.

Hint for 17: For parts (a) and (b), Please don't rewrite the whole proof of the mean-value formula/maximum principle! Just tell me what things you have to change in those proofs. For (c), recall that $\phi(s)$ is convex iff $\phi^{\prime \prime}(s) \geq 0$.

