Math 453 - Homework 7

Peyam Tabrizian

Friday, April 14, 2017

This assignment is due on Friday, April 14, at 11:50 AM
Reading: Sections 2.3.3(b), 2.3.4, 2.1, beginning of 2.4
Chapter 2: Additional Problem, 1, 18

Additional Problem Use an energy method similar to Theorem 10 on page 63 (Uniqueness) to show that the only 2π periodic solution $u=u(x, t)$ to the following nonlinear KdV PDE in one dimension is $u \equiv 0$:

$$
\left\{\begin{aligned}
u_{t}+u\left(u_{x}\right)+u_{x x}+u_{x x x x} & =0 \text { in } \mathbb{R} \times[0, T] \\
u(x, 0) & =0 \text { on } \mathbb{R} \times\{t=0\}
\end{aligned}\right.
$$

Note: Beware of the boundary terms! At some point, you'll need the following inequality (which is a consequence of what's called the Poincaré inequality):

$$
\int_{0}^{2 \pi}\left|u_{x}\right|^{2} d x \leq \int_{0}^{2 \pi}\left|u_{x x}\right|^{2} d x
$$

Hint for 1: It is actually super similar to 14 on HW5.
Hint for 18: This problem is very quick!

