Math 453 - Homework 9

Peyam Tabrizian

Friday, April 28, 2017

This assignment is due on Friday, April 28, at 11:50 AM
Reading: Section 2.4 (and Section 3.2)
Note: You may have noticed that we're into Chapter 3 by now, but I want to give you a little bit more time to digest the Chapter 3 material, since it's a bit tricky. Also, in this way you'll get more practice with the wave equation.

Chapter 2: 24, and the two additional problems below.
Hint for 24: For 24(a), you may assume there are no boundary terms (this follows from D'Alembert and because g and h have compact support). For 24(b), use D'Alembert's formula and that $\left(u_{x}\right)^{2}-\left(u_{t}\right)^{2}=\left(u_{x}-u_{t}\right)\left(u_{x}+u_{t}\right)$. Also, because g and h have compact support, there is some $M>0$ where g and h are 0 outside of $[-M, M]$. You have to consider 3 cases: $x \leq t-M, x \geq M-t$ and $t-M \leq x \leq M-t$. That said, argue that if t is large enough, we actually have $M-t \leq t-M$, so we don't even have to consider the third case!

Additional Problem 1: Solve the following wave equation on the half-line:

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { in }(0, \infty) \times(0, \infty) \\ u(x, 0)=g(x), u_{t}(x, 0)=h(x) & \text { on }(0, \infty) \times\{t=0\} \\ u_{x}(0, t)=0 & \text { on }\{x=0\} \times(0, \infty)\end{cases}
$$

(TURN PAGE)

Additional Problem 2: In this problem, we are going to solve the following wave equation (in one dimension) by turning it into... the heat equation!!! This proof can be generalized to odd dimensions.

Definition: If $\lambda>0$ is fixed, the Laplace transform of $u=u(x, t)$ is:

$$
\mathcal{L} u(x)=\int_{0}^{\infty} u(x, s) e^{-\lambda s^{2}} d s
$$

Suppose that u is a bounded solution of

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ u(x, 0)=g(x), u_{t}(x, 0)=0 & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

(here g is bounded). Extend u to negative times by writing, for $t<0$,

$$
u(x, t)=u(x,-t)
$$

(a) Define

$$
v(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{\frac{-s^{2}}{4 t}} u(x, s) d s
$$

Show directly that v must satisfy $v_{t}-v_{x x}=0$ (You may assume there are no boundary terms).

It's also true (but you do not need to show this) that $v(x, 0)=g(x)$ (at least in the limit as $t \rightarrow 0$), and therefore v satisfies

$$
\begin{cases}v_{t}-v_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ v(x, 0)=g(x) & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

(b) Solve for v. Make sure to verify that you can use uniqueness of solutions on all of \mathbb{R} !
(c) Using (b) the polar coordinates formula, deduce that, for $\lambda=\frac{1}{4 t}$, that

$$
\int_{0}^{\infty} u(x, s) e^{-\lambda s^{2}} d s=\int_{0}^{\infty} G(x, r) e^{-\lambda r^{2}} d r
$$

where $G(x, r):=\frac{1}{2} \int_{\partial B(x, r)} g(y) d S(y)=\frac{1}{2}(g(x+r)+g(x-r))$ (the latter because in one dimension, $B(x, r)=(x-r, x+r)$, whose boundary consists of the points $x \pm r$).
(d) Finally, use the following fact to solve for u :

Fact: The Laplace transform of a function is unique ${ }^{11}$, that is:

$$
\text { If } \mathcal{L} f(x)=\mathcal{L} g(x), \text { then } f(x, t) \equiv g(x, t)
$$

Compare with d'Alembert's formula for $h=0$.

[^0]
[^0]: ${ }^{1}$ If you're curious about the proof of this, see http://www.ctr.maths.lu.se/media/ MATC12/2013ht2013/uniqueness.pdf

