
LECTURE 10: CHEMICAL REACTIONS AND
DIFFUSIONS

Reading: The notes below

Video: The PDE that gave me the PhD

Welcome to the last lecture of our PDE adventure! Today, to end on
a sweet note, we’ll talk about the PDE I studied for my thesis, or, as I
like to call it, the PDE that gave me the PhD. More precisely, explore
an equation (or a set of equations) that model chemical reactions. And
don’t worry, you don’t need to know any chemistry to do this, the only
prereq for this is Breaking Bad ,

1. The Great Debate

Consider a simple chemical reaction A
 B, where a molecule A trans-
forms into B and vice-versa. Think for instance of a molecule or a
protein that folds (or unfolds) to become another molecule.

Take careful note: We are NOT studying C + O2 = CO2, this is al-
ready too complicated; we’re just studying one molecule transforming
into another)

Then there are two ways of viewing this reaction:

1.1. Macroscopic Level. On the one hand, on the macroscopic level,
you can simply say that there are only two molecules A and B, and
you can look at their respective concentrations α and β
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https://youtu.be/HvLScjQlCV0
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α = α(t) = concentration of A at time t

β = β(t) = concentration of B at time t

Then α and β satisfy the following differential equation, called the
reaction-diffusion system:

Reaction-Diffusion System:

(R-D)
αt =k(β − α)

βt =k(α− β)

Here αt and βt are the time derivatives of α and β, and k > 0 (or
kappa) is a positive constant, called the reaction-rate constant.

Note: It’s a BIG deal in chemistry to figure out what k is.

Intuitively (R-D) says the following: If there are more A molecules
than B molecules, like in the following sample:
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Then α > β, β − α < 0, so αt = k(β − α) < 0, so α decreases, so A
decreases

On the other hand, βt = k(α− β) > 0, so B increases.

And therefore (R-D) says that there is a constant interplay between A
and B, until at some point you reach equilibrium:

1.2. Microscopic Level. On the other hand, on the microscopic level,
instead of just having two states A and B, you can actually think of
the molecule as having a continuum of states, like a string:
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Where on the left endpoint you have A and on the right endpoint you
have B, with infinitely many hybrid states in between

We can parametrize those states with a new chemical variable x, where
x = −1 corresponds to A and x = 1 corresponds to B (and x = 0 for
example would be a weird hybrid between A and B). Think of x as a
chemical position.

Again, with the protein analogy, think of x as the angle of the twist.

What’s nice about this interpretation is that now we can give a prob-
abilistic flavor of chemical reactions.
Namely, you can now think of the molecule as a marble that swings
back and forth on (what’s called) a double-well potential function H:
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Here the two wells of H correspond to A and B, and a chemical reac-
tion is just the passage from A to B.

(Assumptions: Even, local max at 0, local min at ±1)

On the potential, the marble performs Brownian Motion (= drunken
motion), and in particular we can model its behavior using a PDE
called the Kramers-Smoluchowski equation:

Disclaimer: What I’m about to write down won’t make any sense to
you, but I’ll spend the next 10 minutes explaining the terms)

Kramers-Smoluchowski Equation:

(K-S) σut = (σux)x
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Here:

(1) u = u(x, t) is the density of the particle

Tells you roughly how many particles there are at x and t, and
ux is the derivative with respect to x

Moreover, although I have not explicitly written it here, every-
thing depends on ε, where:

(2) ε = Zooming factor

ε = 0 is the macroscopic state, ε > 0 is the microscopic state

(3) σ = σ(x) = e−
H(x)
ε

Think of it as H, but we scale it by ε to make it HARD to go
from A to B, and we exponentiated it to make it nicer.
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(Also, technically you have to multiply this by a constant so
that the total mass of σ is 1)

(And strictly speaking, you have to divide the right-hand-side
by a constant τ that makes this work)

I know this looks like complete gibberish, but if you ignore σ in the
equation, then you get ut = uxx, which is a classical PDE called the
heat equation! So all that it is it’s just a scaled version of the heat
equation.

Those two models stirred a GREAT debate in the chemical world,
because some chemists say that the macroscopic model is better, while
others claim that the microscopic one is more accurate.

What I’m claiming is that there shouldn’t be a debate at all, because
is turns out that the two models are just two different sides of the same
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coin!

2. Main Result

Namely, it turns out that if you take the limit of (K-S) as ε goes to 0,
then you get the (R-D) system!

SAY WHAT??? How are the two equations possibly related? In (K-S),
you have one function u that depends on x and t, whereas in (R-D)
you have two functions α and β that only depend on t.

What saves us is· · · ANALYSIS!!! (in particular, something called
functional analysis). More precisely, there is a very nice convergence
called weak-? convergence that is very suited for this kind of result
(Here → denotes weak-? convergence):

Main Theorem (Part 1):

As ε goes to 0, we have:

σ(x)u(x, t)→ α(t)δ−1 + β(t)δ1

Note: Here δ−1 is the dirac delta at x = −1, infinite spike at −1:



LECTURE 10: CHEMICAL REACTIONS AND DIFFUSIONS 9

What is this saying? It is saying that, as our zooming factor ε goes to
0, our solution of (K-S) (multiplied by σ) converges to two spikes, of
height α(t) and β(t)

Picture: (t fixed)
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If you think about it, it sort of makes sense, because for x 6= ±1,

H(x) > 0, and therefore σ = e−
H(x)
ε → 0 except for ±1, so σ concen-

trates at x = ±1.

In case you’re curious, the proof of this uses a standard PDE method
called the energy method: You multiply (K-S) by u and integrate by
parts to get one identity, and then by ut to get another identity, and
then you use some compactness results in functional analysis.

This result is already neat because it explains how we go from 2 vari-
ables x and t to one variable t, but what’s more interesting is to find
the PDE that α and β solve. Because remember that the main goal is
to show how (K-S) and (R-D) are connected.
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Main Theorem (Part 2):

α and β (the limit functions) solve (R-D) with

k =

√
−H ′′(0)H ′′(1)

2π

A-MA-ZING, because it nor only tells us that the PDE are related,
but it also gives us a way of calculating k in terms of our potential H !

Because remember one of the problems I posed at the beginning: It’s a
BIG deal in chemistry to figure out what k is, so once you know H, it
becomes easy to do so! And in fact there are some numerical methods
that approximately calculate what H is.

3. Idea of Proof

Let me give you an idea of the proof of (2) because it’s not only really
neat, but also (as they say) even a calculus student can do this, be-
cause it requires a simple integration by parts.

Note: There are other, more complicated proofs of this, some of which
use Γ convergence, which Giovanni Leoni at CMU is an expert of, and
others use Wasserstein spaces, but what makes this proof nice is its
simplicity.

Start with (K-S):

σut = (σux)x

It turns out that the σ term is BAD because it blows up near ±1. So
what do you do in math with a term that you don’t like? You KILL
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it! (muahahaha >:) )

Here we would like a function whose derivative is 1
σ , so naturally:

Let φ(x) =
� x
0

1
σ(y)dy (antiderivative of 1

σ)

Multiply your PDE by φ and integrate over, say
(
−3

2 ,
3
2

)
(because all

your terms are ok near ±3
2)

Hence we get:

� 3
2

− 3
2

σutφdx =

� 3
2

− 3
2

(σux)x φdx

A = B

3.1. Study of A. Remember that

σu→ αδ−1 + βδ1

Now let me do something that will give analysts a heat-attack: Let’s
differentiate this identity with respect to t:

σut → αtδ−1 + βtδ1

(NOT OBVIOUS, but can show this with separate methods)

This says that σut concentrates at ±1 with spikes α(t) and β(t).

So in fact:

A =

� 3
2

− 3
2

σutφdx→ αtφ(−1) + βtφ(1)

But
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φ(1) =

� 1

0

1

σ
→ 1

k

Can show this using a Taylor expansion near 0 and a Laplace expan-
sion near 1, which explains how H ′′(0) and H ′′(1) contribute to this
(You also need the two constants that I swept under the rug)

And by symmetry

φ(−1) =

� −1

0

1

σ
dx→ −1

k

Therefore:

A→ αt

(
−1

k

)
+ βt

(
1

k

)
=

1

k
(−αt + βt)
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3.2. Study of B.

B =

� 3
2

− 3
2

(σux)x φdx

IBP (assume no terms at endpoints, technically use a cutoff function)

=−
� 3

2

− 3
2

σuxφxdx

Remember φ(x) is an antiderivative of
1

σ

=−
� 3

2

− 3
2

��σux
1

��σ
dx

=−
� 3

2

− 3
2

uxdx

(The war is over)

=u

(
−3

2
, t

)
− u

(
3

2
, t

)
→2α− 2β

(Can show using out estimates)

3.3. Combining the two. And so, in the limit:

A = B

⇒1

k
(−αt + βt) = 2α− 2β

⇒αt − βt = 2k(β − α)

On the other hand, you can simply integrate (K-S) to get

αt + βt = 0

And so, adding/subtracting the equations, we get:
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αt =k(β − α)

βt =k(α− β)

Which is (R-D) !!! �

4. Variations

What’s nice about this proof is that it’s flexible enough to adapt it to
more complicated situations. Let me give you some interesting varia-
tions:

4.1. Triple Wells.

If H has 3 wells, then we get:

σu→ αδ−2 + βδ0 + γδ2

Where:
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αt =k(β − α)

βt =k(α− 2β + γ)

γt =k(β − γ)

In other words, each well interacts with its nearest neighbor. But for
β, since there are two interactions (α ↔ β and β ↔ γ), we have this
extra factor of 2.

4.2. Infinitely many wells.

If H has infinitely many wells, then we get:

σu→
∑
m

αmδ2m

Where:

(αm)t = k (αm−1 − 2αm + αm+1)
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4.3. Higher Dimensions. The true miracle is that we can generalize
this to the case where x is more than 1−dimensional!

Suppose H has wells at e− = (−1, 0, · · · , 0) and e+ = (1, 0, · · · , 0) and
a saddle at O

Then (K-S) becomes:

σut = div (σ∇u)

And we get the same result:

σu→ αδe− + βδe+

Where α and β solve

αt =k(β − α)

βt =k(α− β)
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SAME equation, but this time k is more complicated (depends on the
eigenvalues of D2H at O)

What’s interesting is that this time, instead of defining φ explicitly, we
define it with a PDE. So you’re literally using a PDE to solve a PDE!

4.4. Current and Open Projects. Now of course, one natural ex-
tension is: What if we’re in the higher dimensional case, but this time
we have three potentials? If they are symmetric, then it’s not a prob-
lem at all, you can just adapt the methods above.

But what if the potential is not symmetric at all? That is, the wells are
just at 3 (or more) random locations? Then, even though the second
part of the proof still works, we need to do much more work to prove
the estimates and convergence from the first part. Luckily, in joint
work with Insuk Seo from Seoul National University, we were able to
solve this by using some probability theory, namely by interpreting the
wells as states of a Markov process, and by using some results about
(what are called) metastable random processes. So in some sense, the
case of several wells in higher dimensions has been completely solved.

But what is really nice about this problem that we can generate a
plethora of more open problems just by changing the potential func-
tion H. For instance, let me give you two interesting cases:

Sombrero Problem: What if you take H, but spin it around the z−
axis to look like a sombrero?
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Then there is a circle of wells, and you can show that σu concentrates
on that circle, but the interesting question is: What is the resulting
PDE?

Beaver Dam:
What if H looks like a (version) of a beaver dam, like that:
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Then, sure, σu concentrates on a line, but again it’s interesting to see
what the resulting PDE is, because the particle can not only go left
and right, but also forward and backward (it is not trapped any more).

So you can see, for each H, you have your own little problem, and
maybe you can come up with your favorite version of H as well!

Alright, with this I would like to thank you for flying Peyam airlines, I
hope you had a pleasant stay on board, and I wish you a safe onward
journey ,
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