LECTURE 6: HEAT EQUATION PROPERTIES

Readings:

- Infinite Propagation Speed (section 1 below)
- Section 2.3.1c: Nonhomogeneous Problem (page 49-51)
- Section 2.3.2: Mean-Value Formula (page 52-54)
- Section 2.3.3a: Strong Maximum Principle (up to and including page 56)

Now that we found the fundamental solution of the heat equation and solved the initial-value problem, this week we'd like to explore some properties of the heat equation, like the Mean-Value formula and the Maximum Principle

1. Infinite Propagation Speed

Recall:

One solution of the initial value problem

$$
\left\{\begin{array}{l}
u_{t}=\Delta u \\
u(x, 0)=g(x)
\end{array}\right.
$$

is given by

$$
u(x, t)=\Phi \star g=\frac{1}{(4 \pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}} g(y) d y
$$

Date: Monday, May 4, 2020.

Notice: $e^{-\frac{|x-y|^{2}}{4 t}}>0$, which means that if $g \geq 0$ and $g>0$ somewhere, then $u(x, t)>0$ for all x and t.

Interpretation: This is what's called infinite propagation speed.
In other words, if an alien light-years away lights a match, then you immediately feel the heat of it. This is very different from the wave equations, as we'll see in a couple of weeks.

Applications: Remember that you can think of the heat equation in terms of Brownian Motion:

That is, suppose you do Brownian motion at x until I tell you to stop (at a certain time t). Then, your reward is $g(y)$, where y is the point you stop at.

Then if $u(x, t)=$ expected reward starting at x and time t, then we've seen that u solves the heat equation with $u(x, 0)=g(x)$.

Now suppose $g>0$ somewhere, as in the following picture:

Then $u>0$ for all x and all t .

In other words, there's always a positive chance of reaching any point at any time t.

Consequence: Brownian Motion is isotropic (= the same everywhere)
Careful: This is NOT the same as asking whether, if you start at x, you'll eventually be able to get back to x; that is, whether Brownian motion is recurrent. Interestingly, in two dimensions, the answer is yes (you'll always be able to go back to where you started from), but in 3 dimensions, the answer is no. And in fact there's a famous saying by Kakutani that says "A drunken man will eventually find his way home, but a drunken bird may get lost forever."

2. Inhomogeneous Problem

Reading: Section 2.3.1c: Nonhomogeneous Problem (page 49-51)
Now let's solve the analog Poisson's equation $-\Delta u=f$, but for the heat equation, that is:

Inhomogeneous Problem:

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=f(x, t) \\
u(x, 0)=0
\end{array}\right.
$$

Where $f(x, t)$ is a given function.
Before, for the initial value problem, we used the convolution with respect to x, that is

$$
\Phi \star g=\int_{\mathbb{R}^{n}} \Phi(x-y, t) g(y) d y
$$

But this time we need to use the FULL convolution (with respect to x and t), that is:

$$
\begin{aligned}
u(x, t)=\Phi \star f & =\int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(x-y, t-s) f(y, s) d y d s \\
& =\int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) f(x-y, t-s) d y d s
\end{aligned}
$$

(Again, think sum $=x$, so $x-y+y=x$ and sum $=t$ so $t-s+s=t$. Also, we integrate from 0 to t since, by convention, $\Phi(x, s)=0$ for $s<0$)

Claim:

$$
u=\Phi \star f \text { solves } u_{t}-\Delta u=f
$$

Proof-Sketch: (Please read the full proof in the book)
STEP 1: First of all,

$$
\Delta u=\Delta\left(\iint \Phi f\right)=\iint \Phi(\Delta f)
$$

The point is that the Δu part is not a problem
STEP 2: It's the u_{t} that's a problem, since there are two t here in the integral

$$
u(x, t)=\int_{0}^{t} \Phi(y, s) f(x-y, t-s) d y d s
$$

Recall: Chain Rule

$$
\frac{d}{d t}(f(g(t)))=f^{\prime}(g(t)) g^{\prime}(t)
$$

Chain Rule for Integrals

$$
\frac{d}{d t}\left(\int_{0}^{t} g(x, t-s) d s\right)=g(x, t-t)+\int_{0}^{t} g_{t}(x, t-s) d s
$$

Note: It is just the Chain rule, if you let $F(t)=\int_{0}^{t} g(x, s) d s$
Therefore here, by the Chain rule for integrals:

$$
\begin{aligned}
u_{t} & =\frac{d}{d t}\left(\int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) f(x-y, t-s) d s\right) \\
& =\int_{\mathbb{R}^{n}} \Phi(y, t) f(x-y, t-t) d y+\int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) f_{t}(x-y, t-s) d y d s \\
& =\int_{\mathbb{R}^{n}} \Phi(y, t) f(x-y, 0) d y-\int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) f_{s}(x-y, t-s) d y d s
\end{aligned}
$$

Here we used $f_{t}(x-y, t-s)=-f_{s}(x-y, t-s)$
STEP 3: Therefore:

$$
u_{t}-\Delta u=\int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi\left(-f_{s}-\Delta f\right) d y d s+\int_{\mathbb{R}^{n}} \Phi(y, t) f(x-y, 0)
$$

The problem is that in the \int_{0}^{t} term, Φ has a singularity near 0 , so we need to split up the integral as

$$
\int_{0}^{\epsilon} \int_{\mathbb{R}^{n}}+\int_{\epsilon}^{t} \int_{\mathbb{R}^{n}}+\int_{\mathbb{R}^{n}} \Phi f(0)
$$

Then you show that the first term is small, and for the second term, you show that it's equal to $\int \Phi f-\int \Phi f(0)$, and therefore the above becomes (notice the MIRACULOUS cancellation)

$$
\int \Phi f-\int \Phi f(0)+\int \Phi f(0)=\int \Phi f
$$

And you can then show that the latter goes to f as $\epsilon \rightarrow 0$ (similar to how we solved Poisson's equation).

Therefore $u_{t}-\Delta u=f$.

STEP 4: Finally, you get $u(x, 0)=0$ by writing:

$$
|u|=\left|\int_{0}^{t} \int \Phi f\right| \leq \int_{0}^{t} \int \Phi|f| \leq C \int_{0}^{t} \int \Phi=C \int_{0}^{t} 1=C t \rightarrow 0(\text { as } t \rightarrow 0)
$$

Where we used $\int \Phi=1$ by definition of the fundamental solution

3. The Mean-Value Formula

Reading: Section 2.3.2: Mean-Value Formula (page 52-54)

Recall: Mean-Value Formula for Laplace

If $\Delta u=0$, then

$$
\frac{\int_{B(x, r)} u(y) d y}{\alpha(n) r^{n}}=u(x)
$$

Now here, the analog of $B(x, r)$ is the heat ball:

Heat Ball

$$
E(x, t ; r)=\left\{(y, s) \mid s \leq t, \Phi(x-y, t-s) \geq \frac{1}{r^{n}}\right\}
$$

Note: The first condition says that t is on top of the ball.
Note: To convince you that this is really a ball, let's plug in some values of r.

Example: For $r=1$ this becomes $\Phi(x-y, t-s) \geq 1$
Example: For $r=2$ this becomes $\Phi(x-y, t-s) \geq \frac{1}{2^{n}}$. Notice that $\frac{1}{2^{n}}$ is smaller than 1 , so more points satisfy $\Phi(x-y, t-s) \geq \frac{1}{2^{n}}$.

Hence $E(x, t ; 2)$ is much bigger than $E(x, t ; 1)$, so it is really a ball.

Now, without further ado, here is the mean value formula for the heat equation:

Mean-Value Formula for the Heat Equation

$$
u(x, t)=\frac{\iint_{E(x, t ; r)} u(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s}{4 r^{n}}
$$

Note: Compare this with the mean-value formula for Laplace's equation, in particular the terms in red above. Also, the term $\frac{|x-y|^{2}}{(t-s)^{2}}$ is kind of a normalizing factor (a factor that makes this work)

Proof-Sketch: Similar idea to Laplace's equation:
STEP 1: WLOG, after a translation assume $x=0$ and $t=0$, and let $E(r)=E(0,0 ; r)$. Define

$$
\phi(r)=\frac{1}{r^{n}} \iint_{E(r)} u(y, s) \frac{|y|^{2}}{s^{2}} d y d s=\iint_{E(1)} u\left(r y, r^{2} s\right) \frac{|y|^{2}}{s^{2}} d y d s
$$

(For the last one, you use the change of variables $y^{\prime}=\frac{y}{r}$ and $s^{\prime}=\frac{s}{r^{2}}$)
STEP 2: Then show $\phi^{\prime}(r)=0$
This step is kind of ugly, but basically you write $\phi^{\prime}(r)=A+B$ and after integrating by parts you show $B=$ JUNK $-A$ and therefore you get:

$$
\phi^{\prime}(r)=A+B=A+\mathrm{JUNK}-A=\mathrm{JUNK}
$$

STEP 3: Therefore $\phi(r)$ is constant, and so

$$
\begin{aligned}
\phi(r) & =\lim _{t \rightarrow 0} \phi(t) \\
& =\lim _{t \rightarrow 0} \frac{1}{t^{n}} \iint_{E(t)} \underbrace{u(y, s)}_{\approx u(0,0)} \frac{|y|^{2}}{s^{2}} d y d s \\
& =u(0,0) \lim _{t \rightarrow 0} \frac{1}{t^{n}} \iint_{E(t)} \frac{|y|^{2}}{s^{2}} d y d s \\
& =u(0,0) \lim _{t \rightarrow 0} \iint_{E(1)} \frac{|y|^{2}}{s^{2}} d y d s \quad \text { (Change of variables) } \\
& =u(0,0) \iint_{E(1)} \frac{|y|^{2}}{s^{2}} d y d s \\
& =u(0,0) 4
\end{aligned}
$$

Note: That last integral is not trivial. Check out this link if you want to see a proof of it Heat Ball Integral

Therefore

$$
\frac{1}{r^{n}} \iint_{E(r)} u(y, s) \frac{|y|^{2}}{s^{2}} d y d s=4 u(0,0)
$$

That is:

$$
u(0,0)=\frac{1}{4 r^{2}} \iint_{E(r)} u(y, s) \frac{|y|^{2}}{s^{2}} d y d s
$$

And translating back, we get

$$
u(x, t)=\frac{1}{4 r^{2}} \iint_{E(x, t ; r)} u(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s
$$

4. Strong Maximum Principle

Reading: Section 2.3.3a: Strong Maximum Principle (up to and including page 56)

Same as Laplace, but with a twist

Notation:

$$
\begin{gathered}
U_{T}=U \times(0, T] \\
\Gamma_{T}=\overline{U_{T}} \backslash U_{T}
\end{gathered}
$$

Note: Think of Γ_{T} like a cup: It contains the sides and bottoms, but not the top. And think of U_{T} as water: It contains the inside and the top.

Weak Maximum Principle:

$$
\max _{\bar{J}_{T}} u=\max _{\Gamma_{T}} u
$$

Strong Maximum Principle:

If the max of u is attained at $\left(x_{0}, t_{0}\right)$ for some $x_{0} \in U$, then u is constant in $\bar{U}_{t_{0}}$

In other words, u is constant for all earlier times. The reason why this is so weird is because for the heat equation, we don't know what the future holds; all that we can say is that u is constant up to now. Maybe tomorrow a meteorite will hit us and it'll get much warmer all of the sudden.

Proof-Sketch: Just a consequence of the mean-value formula. Suppose u has a maximum M at $\left(x_{0}, t_{0}\right)$, then by the mean-value formula, we have:

$$
M=u\left(x_{0}, t_{0}\right)=\frac{1}{4 r^{n}} \iint_{E(x, t ; r)} u(y, s) \frac{\left|x_{0}-y\right|^{2}}{\left(t_{0}-s\right)^{2}} d y d s
$$

But the biggest possible value of the right-hand-side is M, and that's only if $u \equiv M$ on $E(x, t ; r)$.

Finally, cover your region with heat balls

Note: Because your heat balls are of the form $s \leq t$, we will never be able to go beyond t_{0}. That's why you can only cover all of $\overline{U_{t_{0}}}$ and nothing beyond that.

