LECTURE 6: HEAT EQUATION PROPERTIES

Readings:
e Infinite Propagation Speed (section 1 below)

e Section 2.3.1c: Nonhomogeneous Problem (page 49-51)
e Section 2.3.2: Mean-Value Formula (page 52-54)

e Section 2.3.3a: Strong Maximum Principle (up to and including
page 56)

Now that we found the fundamental solution of the heat equation and
solved the initial-value problem, this week we’d like to explore some
properties of the heat equation, like the Mean-Value formula and the

Maximum Principle

1. INFINITE PROPAGATION SPEED

One solution of the initial value problem

{ut = Au
u(z,0) = g(z)

is given by
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|z—y|?

Notice: e & > 0, which means that if ¢ > 0 and g > 0 somewhere,
then u(z,t) > 0 for all z and t.

Interpretation: This is what’s called infinite propagation speed.
In other words, if an alien light-years away lights a match, then you
immediately feel the heat of it. This is very different from the wave
equations, as we’ll see in a couple of weeks.

Applications: Remember that you can think of the heat equation in
terms of Brownian Motion:

Yy Time=t
Reward: g(y)

That is, suppose you do Brownian motion at z until I tell you to stop
(at a certain time t). Then, your reward is g(y), where y is the point
you stop at.

Then if u(x,t) = expected reward starting at x and time ¢, then we’ve
seen that u solves the heat equation with u(z,0) = g(z).

Now suppose g > 0 somewhere, as in the following picture:
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g(y)>o

Then u > 0 for all x and all t.

In other words, there’s always a positive chance of reaching any point
at any time t.

Consequence: Brownian Motion is isotropic (= the same everywhere)

Careful: This is NOT the same as asking whether, if you start at x,
you'll eventually be able to get back to x; that is, whether Brownian
motion is recurrent. Interestingly, in two dimensions, the answer is yes
(you’ll always be able to go back to where you started from), but in
3 dimensions, the answer is no. And in fact there’s a famous saying
by Kakutani that says “A drunken man will eventually find his way
home, but a drunken bird may get lost forever.”

2. INHOMOGENEOUS PROBLEM
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Reading: Section 2.3.1c: Nonhomogeneous Problem (page 49-51)

Now let’s solve the analog Poisson’s equation —Au = f, but for the
heat equation, that is:

Inhomogeneous Problem:

up — Au = f(x,t)
u(z,0) =0

Where f(x,t) is a given function.

Before, for the initial value problem, we used the convolution with
respect to x, that is

Dxrg= / d(z —y,t)g(y)dy

But this time we need to use the FULL convolution (with respect to
x and t), that is:

u(a:,t):(I)*f:/Ot/n@(x—y,t—s)f(y,s)dyds
=/Ot/nq)(y,s)f(x—y,t—s)dyds

(Again, think sum =z, s0x —y+y=x and sum =t sot —s+s =t.
Also, we integrate from 0 to t since, by convention, ®(x,s) = 0 for
s < 0)

u=®x f solves uy — Au=f
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Proof-Sketch: (Please read the full proof in the book)

STEP 1: First of all,

svea(f for)- | fuss

The point is that the Au part is not a problem

STEP 2: It’s the u; that’s a problem, since there are two ¢ here in
the integral

u(x,t) = /0/ Oy, s)f(x —y,t — s)dyds

Note: It is just the Chain rule, if you let F(t) = fotg(af, s)ds

Therefore here, by the Chain rule for integrals:
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” :% (/Ot/n@(y,s)f(a:—y,t—s)ds>

- / Oy, t)f(xr —y, t —t)dy + /Ot / (y, s) fi(r —y,t — s)dyds
= [ s =0 [ [ @it vt - sy

Here we used fi(x —y,t —s) = —fs(x —y,t — s)

STEP 3: Therefore:

up — Au—//n Af)dyds-l—/ O(y,t)f(x —y,0)

n

The problem is that in the fo term, ® has a singularity near 0, so we
need to split up the integral as

J o [ oo

Then you show that the first term is small, and for the second term,
you show that it’s equal to [@f — [ ®f(0), and therefore the above
becomes (notice the MIRACULOQOUS cancellation)

for- fore fori- o

And you can then show that the latter goes to f as € — 0 (similar to
how we solved Poisson’s equation).

Therefore u; — Au = f.
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STEP 4: Finally, you get u(z,0) = 0 by writing:

jul =

[[Jo=[ fsnse] fo-e[r-cmiarn

Where we used [ ® =1 by definition of the fundamental solution [J

3. THE MEAN-VALUE FORMULA
Reading: Section 2.3.2: Mean-Value Formula (page 52-54)

If Au =0, then

Now here, the analog of B(x,r) is the heat ball:

E(z,t;r) = {(y,S)\SSt,Q)(x—y,t_S) zrin}
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(x,1)

E(x,t;r)

Note: The first condition says that ¢ is on top of the ball.

Note: To convince you that this is really a ball, let’s plug in some
values of r.

Example: For r = 1 this becomes ®(x — y,t —s) > 1

Example: For r = 2 this becomes ®(z — y,t — s) > 5. Notice that
2% is smaller than 1, so more points satisfy ®(z — y,t — s) > 2%

Hence F(x,t;2) is much bigger than E(z,t;1), so it is really a ball.
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(x,1)

E(x,t;1)

E(x,t;2)

Now, without further ado, here is the mean value formula for the heat
equation:

fquM ( y)| dde

u(z,t) = 47“”

Note: Compare this with the mean-value formula for Laplace’s equa-

2
tion, in particular the terms in red above. Also, the term Zil)"" is kind

of a normalizing factor (a factor that makes this work)
Proof-Sketch: Similar idea to Laplace’s equation:

STEP 1: WLOG, after a translation assume x = 0 and ¢ = 0, and let
E(r) = E(0,0;r). Define

1
= —// u(y, s) ‘y‘ dyds—// u(ry, r?s) |y‘ —5dyds
™ J Jee)
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(For the last one, you use the change of variables y' = £ and s’ = %)
STEP 2: Then show ¢'(r) =

This step is kind of ugly, but basically you write ¢'(r) = A + B and
after integrating by parts you show B = JUNK — A and therefore
you get:

¢'(r)=A+B=A+ JUNK — A= JUNK
STEP 3: Therefore ¢(r) is constant, and so

¢(r) =lim ¢(t)

t—0

Iyl
_%1—{%75”// u(y, s —-dyds

~u( OO

=u(0,0) lim — // |y\ —-dyds
t%O tr

=u(0,0) hm// |y| ~—5dyds  (Change of variables)

t—0

=u(0,0) // ‘y| —-dyds

=u(0,0)4

Note: That last integral is not trivial. Check out this link if you want
to see a proof of it Heat Ball Integral

1 [yl
— —-dyds = 4u(0,0
L o) s = 4u0.0

Therefore


https://math.stackexchange.com/questions/526997/how-to-prove-that-iint-fracy2s2-dy-ds-4
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That is:

1 [yl
u(0,0) = E//E(r) u(y,s)?dyds

And translating back, we get

| 2

1 Tz —y
u(z,t) = E//E(x m)u(% s) = S)2dyds O

4. STRONG MAXIMUM PRINCIPLE

Reading: Section 2.3.3a: Strong Maximum Principle (up to and in-
cluding page 56)

Same as Laplace, but with a twist

Ur=U X (O, T]
I'r = Ur\Ur
Note: Think of I'y like a cup: It contains the sides and bottoms, but

not the top. And think of Uy as water: It contains the inside and the
top.
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U >

Weak Maximum Principle:

maxu = maxu
UT 1_‘T

Strong Maximum Principle:

If the max of u is attained at (xo,to) for some xy € U, then u is
constant in Uy,
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(Xo,to)
u=C C * ) t="1

here \

T\

—— — S—
v

~

L~
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In other words, u is constant for all earlier times. The reason why
this is so weird is because for the heat equation, we don’t know what
the future holds; all that we can say is that u is constant up to now.
Maybe tomorrow a meteorite will hit us and it’ll get much warmer all
of the sudden.

Proof-Sketch: Just a consequence of the mean-value formula. Sup-

pose u has a maximum M at (zg, %), then by the mean-value formula,
we have:

\56 —y|’
M = to) ——dyd
U(xo, O 47“”// o) y) to_ ) yas

But the biggest possible value of the right-hand-side is M, and that’s
only if u = M on E(x,t;r).

Finally, cover your region with heat balls
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(Xo,to)

Note: Because your heat balls are of the form s < ¢, we Will_never
be able to go beyond ¢y. That’s why you can only cover all of U, and
nothing beyond that.
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