
LECTURE 6: HEAT EQUATION PROPERTIES

Readings:

• Infinite Propagation Speed (section 1 below)

• Section 2.3.1c: Nonhomogeneous Problem (page 49-51)

• Section 2.3.2: Mean-Value Formula (page 52-54)

• Section 2.3.3a: Strong Maximum Principle (up to and including
page 56)

Now that we found the fundamental solution of the heat equation and
solved the initial-value problem, this week we’d like to explore some
properties of the heat equation, like the Mean-Value formula and the
Maximum Principle

1. Infinite Propagation Speed
Recall:

One solution of the initial value problem{
ut = ∆u

u(x, 0) = g(x)

is given by

u(x, t) = Φ ? g =
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t g(y)dy
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Notice: e−
|x−y|2

4t > 0, which means that if g ≥ 0 and g > 0 somewhere,
then u(x, t) > 0 for all x and t.

Interpretation: This is what’s called infinite propagation speed.
In other words, if an alien light-years away lights a match, then you
immediately feel the heat of it. This is very different from the wave
equations, as we’ll see in a couple of weeks.

Applications: Remember that you can think of the heat equation in
terms of Brownian Motion:

That is, suppose you do Brownian motion at x until I tell you to stop
(at a certain time t). Then, your reward is g(y), where y is the point
you stop at.

Then if u(x, t) = expected reward starting at x and time t, then we’ve
seen that u solves the heat equation with u(x, 0) = g(x).

Now suppose g > 0 somewhere, as in the following picture:
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Then u > 0 for all x and all t.

In other words, there’s always a positive chance of reaching any point
at any time t.

Consequence: Brownian Motion is isotropic (= the same everywhere)

Careful: This is NOT the same as asking whether, if you start at x,
you’ll eventually be able to get back to x; that is, whether Brownian
motion is recurrent. Interestingly, in two dimensions, the answer is yes
(you’ll always be able to go back to where you started from), but in
3 dimensions, the answer is no. And in fact there’s a famous saying
by Kakutani that says “A drunken man will eventually find his way
home, but a drunken bird may get lost forever.”

2. Inhomogeneous Problem
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Reading: Section 2.3.1c: Nonhomogeneous Problem (page 49-51)

Now let’s solve the analog Poisson’s equation −∆u = f , but for the
heat equation, that is:

Inhomogeneous Problem:{
ut −∆u = f(x, t)

u(x, 0) = 0

Where f(x, t) is a given function.

Before, for the initial value problem, we used the convolution with
respect to x, that is

Φ ? g =

∫
Rn

Φ(x− y, t)g(y)dy

But this time we need to use the FULL convolution (with respect to
x and t), that is:

u(x, t) = Φ ? f =

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s)dyds

=

∫ t

0

∫
Rn

Φ(y, s)f(x− y, t− s)dyds

(Again, think sum = x, so x− y+ y = x and sum = t so t− s+ s = t.
Also, we integrate from 0 to t since, by convention, Φ(x, s) = 0 for
s < 0)

Claim:

u = Φ ? f solves ut −∆u = f
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Proof-Sketch: (Please read the full proof in the book)

STEP 1: First of all,

∆u = ∆

(∫ ∫
Φf

)
=

∫ ∫
Φ(∆f)

The point is that the ∆u part is not a problem

STEP 2: It’s the ut that’s a problem, since there are two t here in
the integral

u(x, t) =

∫ t

0

Φ(y, s)f(x− y, t− s)dyds

Recall: Chain Rule

d

dt
(f(g(t))) = f ′(g(t))g′(t)

Chain Rule for Integrals

d

dt

(∫ t

0

g(x, t− s)ds
)

= g(x, t− t) +

∫ t

0

gt(x, t− s)ds

Note: It is just the Chain rule, if you let F (t) =
∫ t

0 g(x, s)ds

Therefore here, by the Chain rule for integrals:
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ut =
d

dt

(∫ t

0

∫
Rn

Φ(y, s)f(x− y, t− s)ds
)

=

∫
Rn

Φ(y, t)f(x− y, t− t)dy +

∫ t

0

∫
Rn

Φ(y, s)ft(x− y, t− s)dyds

=

∫
Rn

Φ(y, t)f(x− y, 0)dy −
∫ t

0

∫
Rn

Φ(y, s)fs(x− y, t− s)dyds

Here we used ft(x− y, t− s) = −fs(x− y, t− s)

STEP 3: Therefore:

ut −∆u =

∫ t

0

∫
Rn

Φ (−fs −∆f) dyds+

∫
Rn

Φ(y, t)f(x− y, 0)

The problem is that in the
∫ t

0 term, Φ has a singularity near 0, so we
need to split up the integral as∫ ε

0

∫
Rn

+

∫ t

ε

∫
Rn

+

∫
Rn

Φf(0)

Then you show that the first term is small, and for the second term,
you show that it’s equal to

∫
Φf −

∫
Φf(0), and therefore the above

becomes (notice the MIRACULOUS cancellation)∫
Φf −

�
���

��
∫

Φf(0) +
�
���

��
∫

Φf(0) =

∫
Φf

And you can then show that the latter goes to f as ε → 0 (similar to
how we solved Poisson’s equation).

Therefore ut −∆u = f .
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STEP 4: Finally, you get u(x, 0) = 0 by writing:

|u| =
∣∣∣∣∫ t

0

∫
Φf

∣∣∣∣ ≤ ∫ t

0

∫
Φ |f | ≤ C

∫ t

0

∫
Φ = C

∫ t

0

1 = Ct→ 0 (as t→ 0)

Where we used
∫

Φ = 1 by definition of the fundamental solution �

3. The Mean-Value Formula

Reading: Section 2.3.2: Mean-Value Formula (page 52-54)

Recall: Mean-Value Formula for Laplace

If ∆u = 0, then ∫
B(x,r) u(y)dy

α(n)rn
= u(x)

Now here, the analog of B(x, r) is the heat ball:

Heat Ball

E(x, t; r) =

{
(y, s) | s ≤ t,Φ(x− y, t− s) ≥ 1

rn

}
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Note: The first condition says that t is on top of the ball.

Note: To convince you that this is really a ball, let’s plug in some
values of r.

Example: For r = 1 this becomes Φ(x− y, t− s) ≥ 1

Example: For r = 2 this becomes Φ(x − y, t − s) ≥ 1
2n . Notice that

1
2n is smaller than 1, so more points satisfy Φ(x− y, t− s) ≥ 1

2n .

Hence E(x, t; 2) is much bigger than E(x, t; 1), so it is really a ball.
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Now, without further ado, here is the mean value formula for the heat
equation:

Mean-Value Formula for the Heat Equation

u(x, t) =

∫ ∫
E(x,t;r) u(y, s) |x−y|

2

(t−s)2dyds

4rn

Note: Compare this with the mean-value formula for Laplace’s equa-

tion, in particular the terms in red above. Also, the term |x−y|2
(t−s)2 is kind

of a normalizing factor (a factor that makes this work)

Proof-Sketch: Similar idea to Laplace’s equation:

STEP 1: WLOG, after a translation assume x = 0 and t = 0, and let
E(r) = E(0, 0; r). Define

φ(r) =
1

rn

∫ ∫
E(r)

u(y, s)
|y|2

s2
dyds =

∫ ∫
E(1)

u(ry, r2s)
|y|2

s2
dyds
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(For the last one, you use the change of variables y′ = y
r and s′ = s

r2 )

STEP 2: Then show φ′(r) = 0

This step is kind of ugly, but basically you write φ′(r) = A + B and
after integrating by parts you show B = JUNK − A and therefore
you get:

φ′(r) = A+B = A+ JUNK − A = JUNK

STEP 3: Therefore φ(r) is constant, and so

φ(r) = lim
t→0

φ(t)

= lim
t→0

1

tn

∫ ∫
E(t)

u(y, s)︸ ︷︷ ︸
≈u(0,0)

|y|2

s2
dyds

=u(0, 0) lim
t→0

1

tn

∫ ∫
E(t)

|y|2

s2
dyds

=u(0, 0) lim
t→0

∫ ∫
E(1)

|y|2

s2
dyds (Change of variables)

=u(0, 0)

∫ ∫
E(1)

|y|2

s2
dyds

=u(0, 0)4

Note: That last integral is not trivial. Check out this link if you want
to see a proof of it Heat Ball Integral

Therefore

1

rn

∫ ∫
E(r)

u(y, s)
|y|2

s2
dyds = 4u(0, 0)

https://math.stackexchange.com/questions/526997/how-to-prove-that-iint-fracy2s2-dy-ds-4
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That is:

u(0, 0) =
1

4r2

∫ ∫
E(r)

u(y, s)
|y|2

s2
dyds

And translating back, we get

u(x, t) =
1

4r2

∫ ∫
E(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dyds �

4. Strong Maximum Principle

Reading: Section 2.3.3a: Strong Maximum Principle (up to and in-
cluding page 56)

Same as Laplace, but with a twist

Notation:

UT = U × (0, T ]

ΓT = UT\UT

Note: Think of ΓT like a cup: It contains the sides and bottoms, but
not the top. And think of UT as water: It contains the inside and the
top.
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Weak Maximum Principle:

max
UT

u = max
ΓT

u

Strong Maximum Principle:

If the max of u is attained at (x0, t0) for some x0 ∈ U , then u is
constant in U t0



LECTURE 6: HEAT EQUATION PROPERTIES 13

In other words, u is constant for all earlier times. The reason why
this is so weird is because for the heat equation, we don’t know what
the future holds; all that we can say is that u is constant up to now.
Maybe tomorrow a meteorite will hit us and it’ll get much warmer all
of the sudden.

Proof-Sketch: Just a consequence of the mean-value formula. Sup-
pose u has a maximum M at (x0, t0), then by the mean-value formula,
we have:

M = u(x0, t0) =
1

4rn

∫ ∫
E(x,t;r)

u(y, s)
|x0 − y|2

(t0 − s)2
dyds

But the biggest possible value of the right-hand-side is M , and that’s
only if u ≡M on E(x, t; r).

Finally, cover your region with heat balls
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Note: Because your heat balls are of the form s ≤ t, we will never
be able to go beyond t0. That’s why you can only cover all of Ut0 and
nothing beyond that.
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