
LECTURE 7: HEAT EQUATION AND ENERGY
METHODS

Readings:

• Section 2.3.4: Energy Methods

• Convexity (see notes)

• Section 2.3.3a: Strong Maximum Principle (pages 57-59)

This week we’ll discuss more properties of the heat equation, in partic-
ular how to apply energy methods to the heat equation. In fact, let’s
start with energy methods, since they are more fun!

Recall the definition of parabolic boundary and parabolic cylinder from
last time:

Notation:

UT = U × (0, T ]

ΓT = UT\UT

Note: Think of ΓT like a cup: It contains the sides and bottoms, but
not the top. And think of UT as water: It contains the inside and the
top.

Date: Monday, May 11, 2020.

1



2 LECTURE 7: HEAT EQUATION AND ENERGY METHODS

Weak Maximum Principle:

max
UT

u = max
ΓT

u

1. Uniqueness

Reading: Section 2.3.4: Energy Methods

Fact:

There is at most one solution of:{
ut −∆u = f in UT

u = g on ΓT
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We will present two proofs of this fact: One using energy methods,
and the other one using the maximum principle above

Proof: Suppose u and v are solutions, and let w = u − v, then w
solves {

wt −∆w = 0 in UT

u = 0 on ΓT

Proof using Energy Methods:

Now for fixed t, consider the following energy:

E(t) =

∫
U

(w(x, t))2 dx

Then:

E ′(t) =

∫
U

2w (wt) =

∫
U

2w∆w
IBP
= −2

∫
U

|Dw|2 ≤ 0
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Therefore E ′(t) ≤ 0, so the energy is decreasing, and hence:

(0 ≤)E(t) ≤ E(0) =

∫
U

(w(x, 0))2 dx =

∫
0 = 0

And hence E(t) =
∫
w2 ≡ 0, which implies w ≡ 0, so u − v ≡ 0, and

hence u = v �.

Maximum Principle Proof: Let w = u− v be as above, then

max
UT

w = max
ΓT

w = max
ΓT

0 = 0

So the biggest value of w is 0, hence w ≤ 0

Similarly

min
UT

w = min
ΓT

w = min
ΓT

0 = 0

So the smallest value of w is 0, hence w ≥ 0

And therefore w = 0, so u− v = 0, so u = v �

Which method do you like more? Let me know ,

Note: In general, maximum principle methods are good when you
want to prove results about u at a point (x, t) like “Show u(x, t) ≤ 2.”
Energy methods are good when you want to prove results about

∫
u,

like “Show
∫

(u(x, t))2 dx <∞

2. Convexity
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We will do one more fun energy methods exercise, but for this we need
to define what it means for a function to be convex.

Note: This is extremely important if you do any kind of optimization
theory.

Intuitively: Convex = Concave up (from calculus), like x2 or ex

It turns out there are 3 characterizations of convexity, depending on
how many derivatives you have. They are equivalent if f is twice
differentiable, although this is not obvious. Here everything is in 1
dimensions:

Definition 1: (2 derivatives)

f : R→ R is convex if, for all x,

f ′′(x) ≥ 0
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Definition 2: (1 derivative)

f is convex if, for any a ∈ R and any x ∈ R,

f(x) ≥ f(a) + f ′(a)(x− a)

Interpretation: f is above any of its tangent lines

Note: This is extremely useful because sometimes you want to show
f ≥ something, and convexity tells you precisely that: f(x) ≥ f(a) +
f ′(a)(x− a)

Definition 3: (No derivatives)

f is convex if, for any a, b ∈ R and any 0 ≤ t ≤ 1,

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b)
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Interpretation: f is below any chord connecting (a, f(a)) and (b, f(b))

Note: If the t confuses you, try out this definition with t = 1
2 . Then

(1 − t)a + tb becomes the midpoint of [a, b] and (1 − t)f(a) + tf(b)
becomes the midpoint of f(a) and f(b)

It’s the last characterization that we will use below.

3. Backwards Uniqueness

As an application of energy methods and convexity, the following fact
that is not obvious at all. Here T is some terminal time (think T = 2
hours or T = 30 days)
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Backwards Uniqueness:

Suppose u and v solve

{
ut = ∆u in UT

u = g(x, t) on ∂U

{
vt = ∆v in UT

v = g(x, t) on ∂U

And moreover suppose that u(x, T ) = v(x, T )

Then u ≡ v in UT

In other words: Suppose u and v both solve the heat equation and
are equal to g on the lateral part (= sides) of the parabolic cylinder.
Then if they’re equal at the terminal time T , then they must have
been equal all along (meaning for all x and for all t up to T ).
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The reason it’s called backwards uniqueness is that if you know the
terminal value u(x, T ) is the value of u on the sides, then you can
figure out what u is everywhere. This is really surprising because the
heat equation is generally irreversible, you generally cannot go back-
wards in time for the heat equation. But this is saying that you can
go backwards in time, provided you know what u is on the sides!

(The way I picture is that if you put two cakes of the same shape in
the oven, in such a way that you know what the temperature is at the
sides at all times. Then if the temperature when you take them out is
the same, then the temperature of the two must have been the same
at all times).

Notice in particular that there is absolutely no assumption on the ini-
tial terms u(x, 0) and v(x, 0); that’s what makes this so great!

Proof: This is one of the beautiful moments in math where the proof
is more amazing than the result itself:

STEP 1: As usual, let w = u− v, then w solves:{
wt = ∆w in UT

w = 0 on ∂U

And moreover w(x, T ) for all x ∈ U

STEP 2: Define the energy:

E(t) =

∫
U

(w(x, t))2 dx

Then:
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E ′(t) =

∫
U

2wwt =

∫
U

2w∆w = −2

∫
U

Dw ·Dw = −2

∫
U

|Dw|2

Moreover:

E ′′(t) = −4

∫
U

Dw·Dwt
IBP
= 4

∫
U

(∆w)wt = 4

∫
U

(∆w)(∆w) = 4

∫
U

(∆w)2

STEP 3: It turns out that there is a beautiful relationship between
E,E ′, E ′′:

E ′(t) = −2

∫
U

Dw ·Dw IBP
= 2

∫
U

w(∆w)

Now use one of the most important inequalities in PDE:

Cauchy-Schwarz Inequality:

If f and g are any functions, then∫
U

fg ≤
(∫

U

f 2

) 1
2
(∫

U

g2

) 1
2

Therefore:

E ′(t) = 2

∫
U

w(∆w) ≤ 2

(∫
U

w2

) 1
2
(∫

U

(∆w)2

) 1
2

That is:

(E ′(t))
2 ≤ 4

(∫
U

w2

)(∫
U

(∆w)2

)
=

(∫
U

w2

)(∫
U

4(∆w)2

)
= E(t)E ′′(t)
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Therefore:

(E ′(t))
2 ≤ E(t)E ′′(t)

STEP 4: Here is where convexity comes in play!

Let

F (t) = ln(E(t))

Note: Here I’m oversimplifying things a bit because it’s possible that
E(t) = 0, in which case F is undefined.

Then

F ′(t) =
E ′(t)

E(t)

So

F ′′(t) =
E ′′(t)E(t)− (E ′(t))2

(E(t))2 ≥ 0

Therefore F is CONVEX!!! (by the second derivative definition of
convexity)

And therefore, by convexity again (this time the 0 derivative definition
of convexity, with chords) with a = 0 and b = T , we get
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F (tT ) ≤ (1− t)F (0) + tF (T )

That is:

ln(E(tT )) ≤ (1− t) ln(E(0)) + t ln(E(T ))

eln(E(tT )) ≤ e(1−t) ln(E(0))+t ln(E(T ))

(0 ≤)E(tT ) ≤ (E(0))1−t(E(T ))t

However E(T ) =
∫
U(w(x, T ))2 = 0 by assumption on the terminal

value, and hence

0 ≤ E(tT ) ≤ 0⇒ E(tT ) = 0 for all t
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Therefore E(t) ≡ 0 on [0, T ], so
∫

(w(x, t))2 = 0 for all t, so w ≡ 0 �

4. The Cauchy Problem

Reading: Section 2.3.3a: Strong Maximum Principle (pages 57-59)

So far we have seen that the (weak) maximum principle is true, at least
if your domain U is bounded.

Weak Maximum Principle:

max
UT

u = max
ΓT

u

But what if U = Rn? Is the maximum principle still true? It turns
out that in general it is not true, but it is true if u doesn’t grow too fast.
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Cauchy Maximum Principle:

Suppose u solves:{
ut = ∆u in Rn × (0, T )

u = g on Rn × {t = 0}

AND suppose for some A, a > 0, we have

|u(x, t)| ≤ Aea|x|
2

Then:
sup

Rn×[0,T ]

u = sup
Rn

g

So if u doesn’t grow more than square exponentially, then the Cauchy
maximum principle is true.

Note: Generally problems on Rn where you specify u(x, 0) are called
Cauchy problems.
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Corollary: Uniqueness

There is at most one solution of{
ut −∆u = f in Rn × (0, T )

u = g on Rn × {t = 0}

That satisfies
|u(x, t)| ≤ Aea|x|

2

Proof: The usual trick where you let u and v be solutions and let
w = u− v.

However, there are many solutions even of the simple equation{
ut = ∆u in Rn × (0, T )

u = 0 on Rn × {t = 0}

But many of them grow faster than Aea|x|
2

and are hence non-physical.
This is very typical in PDE: Usually your equation has many solutions,
and you need to rule out solutions that physically make no sense.

Sketch of Proof of the Cauchy Maximum Principle:

This is super hand-wavy but is meant to give you the gist of the proof:

First, introduce a helper function v of the form

v = u−
(
Ce|x|

2
)

term

Where C depends on two parameters ε and µ. This seems weird, but
more parameters means more freedom.
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Then show that on UT , we have

v ≤u−
(
Ce|x|

2
)

≤Aea|x|
2

− Ce|x|
2

(By assumption)

≤ sup g (By choosing your first parameter small)

Hence v ≤ sup g, and now choose your other parameter small to get
u ≤ sup g �

Congratulations! We are now done with the heat equation, and
in the next two lectures we’ll talk about our third PDE, the Wave
Equation!
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