
LECTURE 8: THE WAVE EQUATION

Readings:

• Section 2.1: Transport Equation

• The Wave Equation (pages 65-66)

• Section 2.4.1a: D’Alembert’s Formula

• Section 4 of the Lecture Notes: Some consequences

• Section 2.4.1b: Spherical Means

Welcome to the final equation of this course: The Wave Equation

Wave Equation:

utt = ∆u

Compare this with the heat equation ut = ∆u. Even though they look
similar, they actually have different properties!

1. The Transport Equation

Reading: Section 2.1: The Transport Equation

Video: Transport Equation

Date: Monday, May 18, 2020.
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https://www.youtube.com/watch?v=3JaQy2ewMf8


2 LECTURE 8: THE WAVE EQUATION

Let’s first solve a related PDE that will be useful in our solution of the
wave equation.

Transport Equation:{
ut + b ·Du = 0× in Rn × (0,∞)

u(x, 0) = g(x)

Example: In 2 dimensions with b = (3,−2), this becomes

ut + 3ux1
− 2ux2

= 0

It turns out this is fairly easy to solve: First of all, the equation
ut + b · Du = 0 is suggesting that u is constant on lines directed by
〈b, 1〉, which are parametrized by (x+ sb, t+ s).

Therefore, if you let z(s) = u(x+ sb, t+ s), then

z′(s) = ux1
b1 + · · ·+ uxn

bn + ut = ut + b ·Du = 0

Therefore z(s) is constant on lines, and hence in particular we get
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z(0) =z(−t)
⇒ u(x+ 0b, t+ 0) =u(x− tb, t− t)

⇒ u(x, t) =u(x− tb, 0)

⇒ u(x, t) =g(x− tb)

Transport Equation:

The solution of the following PDE is{
ut + b ·Du = 0

u(x, 0) = g(x)

u(x, t) = g(x− tb)

Similarly, we get:

Inhomogeneous version:

The solution of the following PDE is{
ut + b ·Du = f(x, t)

u(x, 0) = g(x)

u(x, t) = g(x− tb) +

� t

0

f(x+ (s− t)b, s)ds

The proof is the same, except here we don’t get z′ = 0, but z′ = f
(and so z =

�
f)

2. The Wave Equation
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Reading: Section 2.4: The Wave Equation (pages 65-66)

Wave Equation:

utt = ∆u

Derivation: Similar to Laplace’s equation or the heat equation, ex-
cept here you start with the identity F = ma (Force = mass times
acceleration)

Applications: The applications of the wave equation depend on the
dimension:

(1) (1 dimension) Models a vibrating string: u(x, t) is the height of
the string at position x and time t

Also used to model sound waves and light waves

(2) (2 dimensions) Models water waves. For example, the wave
equation models the water ripples caused by throwing a rock at
a pond.
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Also used to model a vibrating drum.

(3) (3 dimensions) Models vibrating solids, think like an elastic ball
that vibrates

3. D’Alembert’s Formula (n = 1)

Reading: Section 2.4.1a: D’Alembert’s Formula

Video: D’Alembert’s Formula

Although Laplace’s Equation and the Heat Equation were similar, the
Wave equation is very different. It not only has different properties,
but the derivation is also different.

https://www.youtube.com/watch?v=kRofkag-6Dw
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What makes this even more interesting is that the derivation is different
depending on the dimension: We will first do the 1−dimensional case,
then (next time) the 3−dimensional case, and the 2−dimensional case.

Goal: (n = 1)

Solve: 
utt = uxx

u(x, 0) = g(x)

ut(x, 0) = h(x)

(Vibrating string with initial position g(x) and initial velocity h(x))

STEP 1: Clever Observation: We can write utt − uxx = 0 as(
∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
u︸ ︷︷ ︸

v

= 0

In particular, if you let v =
(
∂
∂t −

∂
∂x

)
u = ut − ux, then the above

becomes

(
∂

∂t
+

∂

∂x

)
v = 0⇒ vt + vx = 0 TRANSPORT EQUATION!

Moreover:

v(x, 0) = ut(x, 0)− ux(x, 0) = h(x)− (g(x))x = h(x)− g′(x)

STEP 2: Therefore we need to solve{
vt + vx = 0

v(x, 0) = h(x)− g′(x)
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(Transport equation with b = 1), which gives:

v(x, t) = h(x− tb)− g′(x− tb) = h(x− t)− g′(x− t)

STEP 3: Solve for u using v = ut − ux, that is:


ut − ux = v = h(x− t)− g′(x− t)︸ ︷︷ ︸

f(x,t)

u(x, 0) = g(x)

(Inhomogeneous transport equation with b = −1 and f(x, t) = h(x −
t)− g′(x− t)), which gives:

u(x, t) =g(x− tb) +

� t

0

f(x+ (s− t)b, s)ds

=g(x+ t) +

� t

0

f(x+ t− s, s)ds

=g(x+ t) +

� t

0

h(x+ t− s− s)− g′(x+ t− s− s)ds (Using def of f)

=g(x+ t) +

� t

0

h(x+ t− 2s)− g′(x+ t− 2s)ds
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=g(x+ t) +

� x+t−2t

x+t−2(0)
h(s′)− g′(s′)

(
−1

2
ds′
)

(Change of vars s′ = x+ t− 2s)

=g(x+ t)− 1

2

� x−t

x+t

h(s)− g′(s)ds

=g(x+ t) +
1

2

� x+t

x−t
h(s)− g′(s)ds

=g(x+ t) +
1

2

� x+t

x−t
h(s)ds− 1

2

� x+t

x−t
g′(s)ds

=g(x+ t) +
1

2

� x+t

x−t
h(s)ds−1

2
g(x+ t) +

1

2
g(x− t)

=
1

2
(g(x− t) + g(x+ t)) +

� x+t

x−t
h(s)ds

Which, last but not least, gives the celebrated:

D’Alembert’s Formula

The solution of the wave equation in 1 dimensions is
utt = uxx

u(x, 0) = g(x)

ut(x, 0) = h(x)

u(x, t) =
1

2
(g(x− t) + g(x+ t)) +

1

2

� x+t

x−t
h(s)ds

4. Some consequences

Let’s look at
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u(x, t) =
1

2
(g(x− t) + g(x+ t)) +

1

2

� x+t

x−t
h(s)ds

a bit more.
(1) If h ≡ 0, then we get

u(x, t) =
1

2
(g(x+ t) + g(x− t))

Which means that, if there’s no initial velocity, the initial wave
splits up into two half-waves, one moving to the right and the
other one moving to the left.

Note: Check out the following really cool web applet that al-
lows you to simulate solutions of the wave equation by specifying
g and h: Wave Equation Simulation

(2) Note that u(x, t) depends only on the values of g and h on
[x − t, x + t]. Values of g and h outside of [x − t, x + t] don’t
affect u at all! This interval is sometimes called the domain of
dependence. Think of the domain of dependence as a kind of

https://www.math.uchicago.edu/~luis/pde/wave.html
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a bunker or safe haven. As long as you’re inside of the bunker,
nothing in the outside world will affect you.

(3)

Corollary:

The wave equation has finite speed of propagation

More precisely, g(x0) > 0 for some x0 but g ≡ 0 inside [x−t, x+
t], then u(x, t) = 0

This is very different from the heat equation, where, as we have
seen, if g(x0) > 0 somewhere, then u(x, t) > 0 everywhere !

Analogy: If an alien (lightyears) away lights a match, then you
immediately feel the effect of the heat. But if that alien makes
a sound, then it will take some time until you heat it (for t so
large until x0 is in [x− t, x+ t])

(4) There is no maximum principle for the wave equation; in general
maxu(x, t) 6= max g. In other words, your wave u(x, t) could
become bigger than your initial wave g(x) (think for instance
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what happens during resonance).

Or, for example, take g ≡ 0 and h > 0, then u(x, t) > 0 but
max g ≡ 0

(5) Smoothness: Usually u is not infinitely differentiable. u is
generally as smooth as g, and 1 degree smoother than h.

For example, if g(x) = |x| (not differentiable) and h ≡ 0, then
u(x, t) = 1

2 (|x− t|+ |x+ t|), which is also not differentiable

(6) Uniqueness: Generally yes, but need to do it with energy
methods since there’s no maximum principle

(7) Reflection Method: (Optional) If you want to solve the wave
equation on the half-line, where this time x > 0 (instead of
x ∈ R) then you can use a reflection method. See page 69 of
the book, or this video: Reflection of Waves, or pages 3-9 of the
following lecture notes Reflection Method. The physical phe-
nomenon is quite interesting, where your wave just reflects off
a wall. Feel free to check it out

5. Euler-Poisson-Darboux Equation

Reading: Section 2.4.1b: Spherical Means

https://www.youtube.com/watch?v=Py5P8cYmo-M
https://sites.uci.edu/ptabrizi/files/2019/11/112A-Lecture-17.pdf
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Of course, you may wonder: Is there a mean-value formula for the
wave equation? Well yes, but actually no! There isn’t a mean-value
formula here, but actually a mean-value PDE called the Euler-Poisson-
Darboux equation! This will actually help us next time to solve the
wave equation in 3 dimensions

(Carefully note: If a theorem is named after a mathematician (like
Fermat’s Last Theorem), then it’s important. Here it’s named after
THREE mathematician, so it’s VERY important)

Fix x and let

φ(r, t) =

 
∂B(x,r)

u(y, t)dS(y)

Note: Technically, φ should also depend on x, but here x will be con-
stant throughout.
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Claim:

φ solves the following PDE, called the Euler-Poisson-Darboux
Equation:

φtt − φrr −
(
n− 1

r

)
φr = 0

With

φ(r, 0) =

 
∂B(x,r)

g(y)dS(y) =: G(r)

φt(r, 0) =

 
∂B(x,r)

h(y)dS(y) =: H(y)

Note: Compare this to back in section 2.2 when we tried to find the
fundamental solution of Laplace’s equation, then we found an expres-
sion of the form w′′ +

(
n−1
r

)
w′. In fact, the φrr +

(
n−1
r

)
φr term is the

radial part of Laplace’s equation in polar coordinates, so the above is a
sort of a wave equation (and we’ll be able to transform it to an actual
wave equation next time).

Proof: Similar to the derivation of Laplace’s mean value formula!

Note: The initial conditions φ(r, 0) = G(r) and φt(r, 0) = H(r) are
easy to check from the definition, so let’s just focus on the PDE.

STEP 1: Just like for Laplace’s equation, let’s change variables:
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φ =
1

nα(n)rn−1

�
∂B(x,r)

u(y, t)dS(y)

=
1

nα(n)rn−1

�
∂B(0,1)

u(x+ rz, t)rn−1dS(z)

(Here we used z =
y − x
r

)

φ =
1

nα(n)

�
∂B(0,1)

u(x+ rz, t)dS(z)

Therefore

φr =
1

nα(n)

�
∂B(0,1)

Du(x+ rz, t)żdS(z)

=
1

nα(n)

�
∂B(x,r)

Du(y, t) ·
(
y − x
r

)(
1

rn−1

)
dS(y)

(Here we used y = x+ rz)

=
1

nα(n)rn−1

�
∂B(x,r)

(
∂u

∂ν

)
dS(z)

=
1

nα(n)rn−1

�
B(x,r)

∆udy

=
1

nα(n)rn−1

�
B(x,r)

uttdy

(By our PDE)

STEP 2: Therefore, we get:
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φr =
1

nα(n)rn−1

�
B(x,r)

uttdy

rn−1φr =
1

nα(n)

�
B(x,r)

uttdy(
rn−1φr

)
r

=
1

nα(n)

(�
B(x,r)

uttdy

)
=

1

nα(n)

(� r

0

�
∂B(x,s)uttdS(y)

dr

)
r

=
1

nα(n)

�
∂B(x,r)

uttdS(y)

=rn−1

(�
∂B(x,r) uttdS(y)

nα(n)rn−1

)
=rn−1

 
∂B(x,r)

uttdS(y)

=rn−1
( 

∂B(x,r)

udS(y)

)
tt

=rn−1φtt

STEP 3: Hence, we get

(
rn−1φr

)
r

=rn−1φtt

(n− 1)rn−2φr + rn−1φrr =rn−1φtt

(n− 1)φr + rφrr =rφtt

φtt =

(
n− 1

r

)
φr + φrr

And therefore, we obtain



16 LECTURE 8: THE WAVE EQUATION

φtt = φrr +

(
n− 1

r

)
φr �

Note: Next time we’ll convert it into an actual wave equation (at least
in 3 dimensions).
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