LECTURE 8: THE WAVE EQUATION

Readings:

- Section 2.1: Transport Equation
- The Wave Equation (pages 65-66)
- Section 2.4.1a: D'Alembert's Formula
- Section 4 of the Lecture Notes: Some consequences
- Section 2.4.1b: Spherical Means

Welcome to the final equation of this course: The Wave Equation

$$
\begin{aligned}
& \text { Wave Equation: } \\
& \qquad u_{t t}=\Delta u
\end{aligned}
$$

Compare this with the heat equation $u_{t}=\Delta u$. Even though they look similar, they actually have different properties!

1. The Transport Equation

Reading: Section 2.1: The Transport Equation
Video: Transport Equation

Date: Monday, May 18, 2020.

Let's first solve a related PDE that will be useful in our solution of the wave equation.

Transport Equation:

$$
\left\{\begin{array}{l}
u_{t}+b \cdot D u=0 \times \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u(x, 0)=g(x)
\end{array}\right.
$$

Example: In 2 dimensions with $b=(3,-2)$, this becomes

$$
u_{t}+3 u_{x_{1}}-2 u_{x_{2}}=0
$$

It turns out this is fairly easy to solve: First of all, the equation $u_{t}+b \cdot D u=0$ is suggesting that u is constant on lines directed by $\langle b, 1\rangle$, which are parametrized by $(x+s b, t+s)$.

Therefore, if you let $z(s)=u(x+s b, t+s)$, then

$$
z^{\prime}(s)=u_{x_{1}} b_{1}+\cdots+u_{x_{n}} b_{n}+u_{t}=u_{t}+b \cdot D u=0
$$

Therefore $z(s)$ is constant on lines, and hence in particular we get

$$
\begin{aligned}
z(0) & =z(-t) \\
\Rightarrow u(x+0 b, t+0) & =u(x-t b, t-t) \\
\Rightarrow u(x, t) & =u(x-t b, 0) \\
\Rightarrow u(x, t) & =g(x-t b)
\end{aligned}
$$

Transport Equation:

The solution of the following PDE is

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{t}+b \cdot D u=0 \\
u(x, 0)=g(x)
\end{array}\right. \\
& u(x, t)=g(x-t b)
\end{aligned}
$$

Similarly, we get:

Inhomogeneous version:

The solution of the following PDE is

$$
\begin{gathered}
\left\{\begin{array}{l}
u_{t}+b \cdot D u=f(x, t) \\
u(x, 0)=g(x)
\end{array}\right. \\
u(x, t)=g(x-t b)+\int_{0}^{t} f(x+(s-t) b, s) d s
\end{gathered}
$$

The proof is the same, except here we don't get $z^{\prime}=0$, but $z^{\prime}=f$ (and so $z=\int f$)

2. The Wave Equation

Reading: Section 2.4: The Wave Equation (pages 65-66)

Wave Equation:

$$
u_{t t}=\Delta u
$$

Derivation: Similar to Laplace's equation or the heat equation, except here you start with the identity $F=m a$ (Force $=$ mass times acceleration)

Applications: The applications of the wave equation depend on the dimension:
(1) (1 dimension) Models a vibrating string: $u(x, t)$ is the height of the string at position x and time t

Also used to model sound waves and light waves
(2) (2 dimensions) Models water waves. For example, the wave equation models the water ripples caused by throwing a rock at a pond.

Also used to model a vibrating drum.
(3) (3 dimensions) Models vibrating solids, think like an elastic ball that vibrates

3. D'Alembert's Formula $(n=1)$

Reading: Section 2.4.1a: D'Alembert's Formula
Video: D'Alembert's Formula
Although Laplace's Equation and the Heat Equation were similar, the Wave equation is very different. It not only has different properties, but the derivation is also different.

What makes this even more interesting is that the derivation is different depending on the dimension: We will first do the 1 -dimensional case, then (next time) the 3 -dimensional case, and the 2 -dimensional case.

Goal: $(n=1)$

Solve:

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x} \\
u(x, 0)=g(x) \\
u_{t}(x, 0)=h(x)
\end{array}\right.
$$

(Vibrating string with initial position $g(x)$ and initial velocity $h(x)$)
STEP 1: Clever Observation: We can write $u_{t t}-u_{x x}=0$ as

$$
\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) \underbrace{\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial x}\right)}_{v} u=0
$$

In particular, if you let $v=\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial x}\right) u=u_{t}-u_{x}$, then the above becomes

$$
\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) v=0 \Rightarrow v_{t}+v_{x}=0 \quad \text { TRANSPORT EQUATION! }
$$

Moreover:

$$
v(x, 0)=u_{t}(x, 0)-u_{x}(x, 0)=h(x)-(g(x))_{x}=h(x)-g^{\prime}(x)
$$

STEP 2: Therefore we need to solve

$$
\left\{\begin{array}{l}
v_{t}+v_{x}=0 \\
v(x, 0)=h(x)-g^{\prime}(x)
\end{array}\right.
$$

(Transport equation with $b=1$), which gives:

$$
v(x, t)=h(x-t b)-g^{\prime}(x-t b)=h(x-t)-g^{\prime}(x-t)
$$

STEP 3: Solve for u using $v=u_{t}-u_{x}$, that is:

$$
\left\{\begin{array}{l}
u_{t}-u_{x}=v=\underbrace{h(x-t)-g^{\prime}(x-t)}_{f(x, t)} \\
u(x, 0)=g(x)
\end{array}\right.
$$

(Inhomogeneous transport equation with $b=-1$ and $f(x, t)=h(x-$ $t)-g^{\prime}(x-t)$, which gives:

$$
\begin{aligned}
u(x, t) & =g(x-t b)+\int_{0}^{t} f(x+(s-t) b, s) d s \\
& =g(x+t)+\int_{0}^{t} f(x+t-s, s) d s \\
& \left.=g(x+t)+\int_{0}^{t} h(x+t-s-s)-g^{\prime}(x+t-s-s) d s \quad \text { (Using def of } f\right) \\
& =g(x+t)+\int_{0}^{t} h(x+t-2 s)-g^{\prime}(x+t-2 s) d s
\end{aligned}
$$

$$
\begin{aligned}
= & g(x+t)+\int_{x+t-2(0)}^{x+t-2 t} h\left(s^{\prime}\right)-g^{\prime}\left(s^{\prime}\right)\left(-\frac{1}{2} d s^{\prime}\right) \\
& \quad\left(\text { Change of vars } s^{\prime}=x+t-2 s\right) \\
= & g(x+t)-\frac{1}{2} \int_{x+t}^{x-t} h(s)-g^{\prime}(s) d s \\
= & g(x+t)+\frac{1}{2} \int_{x-t}^{x+t} h(s)-g^{\prime}(s) d s \\
= & g(x+t)+\frac{1}{2} \int_{x-t}^{x+t} h(s) d s-\frac{1}{2} \int_{x-t}^{x+t} g^{\prime}(s) d s \\
= & g(x+t)+\frac{1}{2} \int_{x-t}^{x+t} h(s) d s-\frac{1}{2} g(x+t)+\frac{1}{2} g(x-t) \\
= & \frac{1}{2}(g(x-t)+g(x+t))+\int_{x-t}^{x+t} h(s) d s
\end{aligned}
$$

Which, last but not least, gives the celebrated:

D'Alembert's Formula

The solution of the wave equation in 1 dimensions is

$$
\begin{gathered}
\begin{cases}u_{t t}= & u_{x x} \\
u(x, 0)= & g(x) \\
u_{t}(x, 0)= & h(x)\end{cases} \\
u(x, t)=\frac{1}{2}(g(x-t)+g(x+t))+\frac{1}{2} \int_{x-t}^{x+t} h(s) d s
\end{gathered}
$$

4. SOME CONSEQUENCES

Let's look at

$$
u(x, t)=\frac{1}{2}(g(x-t)+g(x+t))+\frac{1}{2} \int_{x-t}^{x+t} h(s) d s
$$

a bit more.
(1) If $h \equiv 0$, then we get

$$
u(x, t)=\frac{1}{2}(g(x+t)+g(x-t))
$$

Which means that, if there's no initial velocity, the initial wave splits up into two half-waves, one moving to the right and the other one moving to the left.

$$
\mathrm{t}=\mathrm{o} \quad \text { Large } \mathrm{t}
$$

Note: Check out the following really cool web applet that allows you to simulate solutions of the wave equation by specifying g and h : Wave Equation Simulation
(2) Note that $u(x, t)$ depends only on the values of g and h on $[x-t, x+t]$. Values of g and h outside of $[x-t, x+t]$ don't affect u at all! This interval is sometimes called the domain of dependence. Think of the domain of dependence as a kind of
a bunker or safe haven. As long as you're inside of the bunker, nothing in the outside world will affect you.

Corollary:

The wave equation has finite speed of propagation
(3)

More precisely, $g\left(x_{0}\right)>0$ for some x_{0} but $g \equiv 0$ inside $[x-t, x+$ $t]$, then $u(x, t)=0$

This is very different from the heat equation, where, as we have seen, if $g\left(x_{0}\right)>0$ somewhere, then $u(x, t)>0$ everywhere!

Analogy: If an alien (lightyears) away lights a match, then you immediately feel the effect of the heat. But if that alien makes a sound, then it will take some time until you heat it (for t so large until x_{0} is in $[x-t, x+t]$)
(4) There is no maximum principle for the wave equation; in general $\max u(x, t) \neq \max g$. In other words, your wave $u(x, t)$ could become bigger than your initial wave $g(x)$ (think for instance
what happens during resonance).

Or, for example, take $g \equiv 0$ and $h>0$, then $u(x, t)>0$ but $\max g \equiv 0$
(5) Smoothness: Usually u is not infinitely differentiable. u is generally as smooth as g, and 1 degree smoother than h.

For example, if $g(x)=|x|$ (not differentiable) and $h \equiv 0$, then $u(x, t)=\frac{1}{2}(|x-t|+|x+t|)$, which is also not differentiable
(6) Uniqueness: Generally yes, but need to do it with energy methods since there's no maximum principle
(7) Reflection Method: (Optional) If you want to solve the wave equation on the half-line, where this time $x>0$ (instead of $x \in \mathbb{R}$) then you can use a reflection method. See page 69 of the book, or this video: Reflection of Waves, or pages 3-9 of the following lecture notes Reflection Method. The physical phenomenon is quite interesting, where your wave just reflects off a wall. Feel free to check it out
5. Euler-Poisson-Darboux Equation

Reading: Section 2.4.1b: Spherical Means

Of course, you may wonder: Is there a mean-value formula for the wave equation? Well yes, but actually no! There isn't a mean-value formula here, but actually a mean-value $P D E$ called the Euler-PoissonDarboux equation! This will actually help us next time to solve the wave equation in 3 dimensions
(Carefully note: If a theorem is named after a mathematician (like Fermat's Last Theorem), then it's important. Here it's named after THREE mathematician, so it's VERY important)

Fix x and let

$$
\phi(r, t)=f_{\partial B(x, r)} u(y, t) d S(y)
$$

Note: Technically, ϕ should also depend on x, but here x will be constant throughout.

Claim:

ϕ solves the following PDE, called the Euler-Poisson-Darboux Equation:

$$
\phi_{t t}-\phi_{r r}-\left(\frac{n-1}{r}\right) \phi_{r}=0
$$

With

$$
\begin{aligned}
\phi(r, 0) & =f_{\partial B(x, r)} g(y) d S(y)=: G(r) \\
\phi_{t}(r, 0) & =f_{\partial B(x, r)} h(y) d S(y)=: H(y)
\end{aligned}
$$

Note: Compare this to back in section 2.2 when we tried to find the fundamental solution of Laplace's equation, then we found an expression of the form $w^{\prime \prime}+\left(\frac{n-1}{r}\right) w^{\prime}$. In fact, the $\phi_{r r}+\left(\frac{n-1}{r}\right) \phi_{r}$ term is the radial part of Laplace's equation in polar coordinates, so the above is a sort of a wave equation (and we'll be able to transform it to an actual wave equation next time).

Proof: Similar to the derivation of Laplace's mean value formula!
Note: The initial conditions $\phi(r, 0)=G(r)$ and $\phi_{t}(r, 0)=H(r)$ are easy to check from the definition, so let's just focus on the PDE.

STEP 1: Just like for Laplace's equation, let's change variables:

$$
\begin{aligned}
\phi= & \frac{1}{n \alpha(n) r^{n-1}} \int_{\partial B(x, r)} u(y, t) d S(y) \\
= & \frac{1}{n \alpha(n) r^{n-1}} \int_{\partial B(0,1)} u(x+r z, t) r^{n-1} d S(z) \\
& \left(\text { Here we used } z=\frac{y-x}{r}\right) \\
\phi= & \frac{1}{n \alpha(n)} \int_{\partial B(0,1)} u(x+r z, t) d S(z)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\phi_{r} & =\frac{1}{n \alpha(n)} \int_{\partial B(0,1)} D u(x+r z, t) \dot{z} d S(z) \\
& =\frac{1}{n \alpha(n)} \int_{\partial B(x, r)} D u(y, t) \cdot\left(\frac{y-x}{r}\right)\left(\frac{1}{r^{n-1}}\right) d S(y)
\end{aligned}
$$

$$
\text { (Here we used } y=x+r z \text {) }
$$

$$
\begin{aligned}
& =\frac{1}{n \alpha(n) r^{n-1}} \int_{\partial B(x, r)}\left(\frac{\partial u}{\partial \nu}\right) d S(z) \\
& =\frac{1}{n \alpha(n) r^{n-1}} \int_{B(x, r)} \Delta u d y \\
& =\frac{1}{n \alpha(n) r^{n-1}} \int_{B(x, r)} u_{t t} d y
\end{aligned}
$$

(By our PDE)

STEP 2: Therefore, we get:

$$
\begin{aligned}
\phi_{r} & =\frac{1}{n \alpha(n) r^{n-1}} \int_{B(x, r)} u_{t t} d y \\
r^{n-1} \phi_{r} & =\frac{1}{n \alpha(n)} \int_{B(x, r)} u_{t t} d y \\
\left(r^{n-1} \phi_{r}\right)_{r} & =\frac{1}{n \alpha(n)}\left(\int_{B(x, r)} u_{t t} d y\right) \\
& =\frac{1}{n \alpha(n)}\left(\int_{0}^{r} \int_{\partial B(x, s) u_{t t} d S(y)} d r\right)_{r} \\
& =\frac{1}{n \alpha(n)} \int_{\partial B(x, r)} u_{t t} d S(y) \\
& =r^{n-1}\left(\frac{\int_{\partial B(x, r)} u_{t t} d S(y)}{\left.n \alpha(n) r^{n-1}\right)}\right. \\
& =r^{n-1} f_{\partial B(x, r)} u_{t t} d S(y) \\
& =r^{n-1}\left(f_{\partial B(x, r)} u d S(y)\right)_{t t} \\
& =r^{n-1} \phi_{t t}
\end{aligned}
$$

STEP 3: Hence, we get

$$
\begin{aligned}
\left(r^{n-1} \phi_{r}\right)_{r} & =r^{n-1} \phi_{t t} \\
(n-1) r^{n-2} \phi_{r}+r^{n-1} \phi_{r r} & =r^{n-1} \phi_{t t} \\
(n-1) \phi_{r}+r \phi_{r r} & =r \phi_{t t} \\
\phi_{t t} & =\left(\frac{n-1}{r}\right) \phi_{r}+\phi_{r r}
\end{aligned}
$$

And therefore, we obtain

$$
\phi_{t t}=\phi_{r r}+\left(\frac{n-1}{r}\right) \phi_{r} \quad \square
$$

Note: Next time we'll convert it into an actual wave equation (at least in 3 dimensions).

