
LECTURE 9: WAVE EQUATION AND ENERGY
METHODS

Readings:

• Section 2.4.3: Energy Methods

• Section 2.4.1c: Solution for n = 3 (pages 71-72)

• (Optional) Solution for n = 2 (pages 73-74)

• (Optional) Section 2.4.2: Nonhomogeneous Problem

Welcome to the second (and final) part of our wave equation adven-
ture! Today is all about energy methods, as well as solving the wave
equation in 3 dimensions.

1. Uniqueness

Reading: Section 2.4.3: Energy Methods

Let’s first show that the solutions to the wave equation are unique.
Since there is no maximum principle, we have to resort to energy meth-
ods to show this.

Recall:

UT = U × (0, T ]

ΓT = UT\UT
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Note: ΓT is like a cup: It contains the sides and bottoms, but not the
top. And UT is like water: It contains the inside and the top.

Uniqueness:

There is at most one solution of
utt −∆u = f(x, t) in UT

u(x, t) = g(x, t) on ΓT

ut(x, 0) = h(x)

To clarify, this means that u solves the (inhomogeneous) wave equa-
tion inside the cup, u is g on the sides and the bottom, and the initial
velocity (at the bottom) is h

Proof:
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STEP 1: Suppose u and v are solutions, and let w = u − v, then w
solves


wtt −∆w = 0 in UT

w = 0 on ΓT

wt(x, 0) = 0

STEP 2: For each t, consider the following energy

E(t) =
1

2

�
U

(wt(x, t))
2 + |Dw(x, t)|2 dx

(You formally get this energy by multiplying the PDE by wt and inte-
grating by parts; or think of this as the kinetic energy 1

2 mass × speed2)

STEP 3: Then

E ′(t) =

�
U

wtwtt +Dw ·Dwt

IBP
=

�
U

wtwtt − (∆w)wt

=

�
U

wt

(
wtt −∆w︸ ︷︷ ︸

0

)
=0

STEP 4: Therefore E is constant, and therefore

E(t) = E(0) =

�
U

(wt(x, 0))2︸ ︷︷ ︸
0

+ |Dw(x, 0)|2︸ ︷︷ ︸
0

= 0

Note: The last term is 0 because w(x, 0) for all x (since w = 0
on ΓT ) and therefore, differentiating this with respect to x, we get
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Dw(x, 0) = 0

Therefore

E(t) =
1

2

�
U

(wt(x, t))
2 + |Dw(x, t)|2 dx ≡ 0

Which can only happen if wt ≡ 0 and Dw ≡ 0, which means w ≡ C,
but since w(x, 0) = 0, we get C = 0 and hence w ≡ 0, so u ≡ v �

2. Domain of Dependence

This section is also called What happens in a Cone, stays in a cone

Recall: In 1 dimensions, the wave equation has finite speed of prop-
agation, meaning that u(x, t) only depends on initial values inside the
interval (x− t, x+ t). In particular, any initial condition outside that
interval doesn’t affect u(x, t) at all

Analogy: If an alien light years away makes a sound, then it’ll take
some time for you to hear it



LECTURE 9: WAVE EQUATION AND ENERGY METHODS 5

Here we would like to show that this phenomenon is true in any di-
mensions, except here the analog of (x− t, x+ t) is a cone.

Definition:

The wave cone with apex (x0, t0) is

K(x0, t0) = {(x, t) | 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

To convince you that K(x0, t0) is a cone, let’s work out a specific
example

Example:

Draw K(x0, 2) (so t0 = 2)

First of all, by definition, we have t ≤ 2 = t0

If t = 2, then |x− x0| ≤ t0 − t = 2− 2 = 0, so |x− x0| ≤ 0 is the disk
centered at radius 0, hence just the point x0 (in the t = 2 plane)

If t = 1, then |x− x0| ≤ t0 − t = 2− 1 = 1, so |x− x0| ≤ 1 is the disk
centered at x0 and radius 1 (in the t = 1 plane)

Finally, if t = 0, then |x− x0| ≤ t0 − t = 2 − 0 = 2, which is the disk
centered at x0 and radius 2 (in the t = 0 plane)
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In other words, the horizontal slices are just disks that get bigger and
bigger the smaller t is, so K(x0, t0) is really a cone.
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Claim:

Suppose u solves utt = ∆u

Moreover, suppose u = ut = 0 on B(x0, t0)× {t = 0}

Then u ≡ 0 inside K(x0, t0)

In other words, even if u is CRAZY outside of B(x0, t0)× {t = 0}, as
long as u = ut = 0 inside B(x0, t0)×{t = 0}, u will still be 0 inside the
whole cone K(x0, t0). In other words anything that happens outside
of B(x0, t0)× {t = 0} has no effect on K(x0, t0).

(Think of the cone as a safe zone, inside you’re safe from any distur-
bances outside the cone)
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Proof:

STEP 1: Define the local energy

e(t) =
1

2

�
B(x0,t0−t)

(ut(x, t))
2 + |Du(x, t)|2 dx

Careful: Since the region itself depends on t, we need to differentiate
the region as well. Luckily, using the polar coordinate formula, one
can show that

d

dt

�
B(x,t)

BLAH =

�
∂B(x,t)

BLAH

STEP 2: Therefore, using the chain rule, we get
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E ′(t) =

�
B(x0,t0−t)

ututt +Du ·Dut −
1

2

�
∂B(x0,t0−t)

(ut)
2 + |Du|2 dS(y)

IBP
=

�
B(x0,t0−t)

ututt +

�
∂B(x0,t0−t)

(
∂u

∂ν

)
ut −

�
B(x0,t0−t)

(∆u)ut

−
�
∂B(x0,t0−t)

(ut)
2 + |Du|2 dS(y)

=

�
B(x0,t0−t)

ut (utt −∆u)︸ ︷︷ ︸
0

+

�
∂B(x0,t0−t)

(
∂u

∂ν

)
ut −

1

2
(ut)

2 − 1

2
|Du|2 dS(y)

=

�
∂B(x0,t0−t)

(
∂u

∂ν

)
ut −

1

2
(ut)

2 − 1

2
|Du|2 dS(y)

STEP 3: However, using

(1) The definition of ∂u
∂ν

(2) The Cauchy-Schwarz inequality |a · b| ≤ |a| |b|

(3) The fact that |ν| = 1 (since ν is the unit normal vector)

(4) Cauchy’s inequality ab ≤ 1
2a

2 + 1
2b

2

we get:
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∂u

∂ν
ut ≤

∣∣∣∣∂u∂νut
∣∣∣∣

=

∣∣∣∣∂u∂ν
∣∣∣∣ |ut|

(1)
= |Du · ν| |ut|
(2)

≤ |Du| |ν|︸︷︷︸
=1

|ut|

(3)
= |Du| |ut|
(4)

≤1

2
|Du|2 +

1

2
|ut|2

And therefore (
∂u

∂ν
ut

)
− 1

2
|Du|2 − 1

2
|ut|2 ≤ 0

STEP 4: But this implies

e′(t) =

�
∂B(x0,t0−t)

(
∂u

∂ν

)
ut −

1

2
(ut)

2 − 1

2
|Du|2 dS(y) ≤ 0

Therefore e(t) is decreasing, and hence

e(t) ≤ e(0) =
1

2

�
B(x0,t0)

(ut(x, 0))2︸ ︷︷ ︸
0

+ |Du(x, 0)|2︸ ︷︷ ︸
0

dx = 0

(Remember u = 0 and ut = 0 on B(x0, t0)× {t = 0} by assumption)

STEP 5: Therefore we get e(t) ≡ 0, and so
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e(t) =
1

2

�
B(x0,t0−t)

(ut(x, t))
2 + |Du(x, t)|2 dx ≡ 0

Which implies that for all x and t, we have ut ≡ 0 and Du ≡ 0, and
so u is constant

But then, since u(x, 0) = 0 on B(x0, t0) (bottom of the cone) we then
get u ≡ 0 �

3. Kirchoff’s Formula

Reading: Section 2.4.1c: Solution for n = 3 (pages 71-72)

After all this energy method excitement, let’s go back to solving the
wave equation.

Last time: Found the solution of the wave equation in 1 dimensions,
and our goal was to find a solution in higher dimensions (here in n = 3
dimensions).

We also found a mean-value PDE for the wave equation:

Fix x and let



12 LECTURE 9: WAVE EQUATION AND ENERGY METHODS

Fact:

If u solves 
utt −∆u = 0

u(x, 0) = g(x)

ut(x, 0) = h(x)

And you let

φ(r, t) =:

 
∂B(x,r)

u(y, t)dS(y)

G(r) =:

 
∂B(x,r)

g(y)dS(y)

H(r) =:

 
∂B(x,r)

h(y)dS(y)

Then φ solves the Euler-Poisson Darboux Equation:
φtt − φrr −

(
n−1
r

)
φr = 0

φ(r, 0) = G(r)

φt(r, 0) = H(y)

MIRACLE: In 3 dimensions (n = 3) we can actually transform this
into a 1−dimensional wave equation!
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Claim:

Given φ,G,H as above, let
ũ =: rφ

G̃ =: rG

H̃ =: rH

Then ũ solves 
ũtt = ũrr

ũ(r, 0) = G̃

ũt(r, 0) = H̃

In other words, even though φ doesn’t solve a wave equation, ũ = rφ
does!

Proof:

ũtt =(rφ)tt
=rφtt

=r

(
φrr +

(
n− 1

r

)
φr

)
(By Euler-Poisson-Darboux)

=rφrr + (n− 1)φr

=rφrr + 2φr (In 3 dimensions, n = 3)

= (rφr + φ)r (Product rule)

= (rφ)rr (Product rule again)

=ũrr
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Therefore ũtt = ũrr, and the initial conditions follow from defini-
tion. �

Upshot: Since ũ solves a 1D wave equation, we can now use D’Alembert’s
formula to solve this!

D’Alembert’s Formula

u(x, t) =
1

2
(g(x− t) + g(x+ t)) +

1

2

� x+t

x−t
h(s)ds

Here we get:

ũ(r, t) =
1

2

(
G̃(r + t)− G̃(r − t)

)
+

1

2

� t+r

t−r
H̃(s)ds

rφ(r, t) =
1

2

(
G̃(r + t)− G̃(r − t)

)
+

1

2

� t+r

t−r
H̃(s)ds

φ(r, t) =
1

2

(
G̃(r + t)

r
− G̃(r − t)

r

)
+

1

2

(� t+r
t−r H̃(s)ds

r

)

Now, letting r → 0 and using that φ(r, t) =
�
∂B(x,r) u(y, t)dS(y) (the

average of u on the sphere centered at x and radius r), as well as
l’Hôpital’s rule, we get:
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u(x, t) =
1

2

(
G̃′(t) + G̃′(t)

)
+

1

2

(
H̃(t) + H̃(t)

)
=G̃′(t) + H̃(t)

=
d

dt

(
t

 
∂B(x,t)

g(y)dS(y)

)
+ t

 
∂B(x,t)

h(y)dS(y)

=

 
∂B(x,t)g(y)dS(y)

+t
d

dt

( 
∂B(x,t)

g(y)dS(y)

)
+ t

 
∂B(x,t)

h(y)dS(y)

And using the same trick as usual with the change of variables z = y−x
t ,

the integral with d
dt eventually becomes

�
∂B(x,t)Dg(y) · (y − x)dS(y).

This finally gives us the following solution for the wave equation in 3
dimensions:

Kirchoff’s Formula (n = 3):

A solution to the wave equation in 3 dimensions is given by

u(x, t) =

 
∂B(x,t)

th(y) + g(y) +Dg(y) · (y − x)dS(y)

Note: It turns out that a similar (but more complicated) formula
holds in odd dimensions (like 5 or 7 dimensions)

4. Poisson’s Formula and beyond

Reading: Solution for n = 2 (pages 73-74, optional)

Reading: Section 2.4.2: Nonhomogeneous problem
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To find a solution in 2 dimensions, use the following clever trick:
Suppose u(x1, x2, t) solves the wave equation in 2 dimensions, then
u(x1, x2, x3, t) =: u(x1, x2, t) solves the wave equation in 3 dimensions,
which means that you can apply Kirchoff’s formula to u to get

u(x1, x2, t) = u(x1, x2, x3, t) =

 
∂B(x,t)

th(y)+g(y)+Dg(y)·(y−x)dS(y)

(Here B(x, t) is the ball in 3 dimensions). But the annoying thing is
to simplify everything to get everything back to 2 dimensions.

However, this can be done, see the book if you’re interested. The main
result is that

Poisson’s Formula (n = 2):

A solution to the wave equation in 2 dimensions is given by

u(x, t) =
1

2

 
B(x,t)

tg(y) + t2h(y) + tDg(y) · (y − x)√
t2 − |y − x|2

dy

Note: This trick of using 3 dimensions to solve the 2 dimensional
problem is called the method of descent. Similarly, the method of
descent can be used to solve the wave equation in even dimensions
(4, 6, . . . ), which means that we have now solved the wave equation in
all dimensions! Wooohoo!!!

Note: Finally, using (what’s called) Duhamel’s principle (see section
2.4.2 of the book if interested), one can solve the inhomogeneous prob-
lem utt −∆u = f .
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So, for our purposes, we are done with the wave equation, congratula-
tions! And the next lecture will be a sweet surprise ,
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