

PURDUE
 U N I V E R S I T Y

Preston Smith
Director of Research Services

July 2, 2015

RCAC Staffing
https://www.rcac.purdue.edu/about/staff/

- IT Research Computing (RCAC)
- A unit of ITaP (Information Technology at Purdue) - the central IT organization at Purdue.
- RCAC provides advanced computational resources and services to support Purdue faculty and staff researchers.

Our goal: To be the one-stop provider of choice for research compu9ng and data services at Purdue -Delivering powerful, reliable, easy-to-use, service-oriented compu9ng and exper9se to Purdue researchers.

- Without a large capital acquisition by the university, providing cutting-edge computing capabilities for researchers was not possible.
- Many faculty were getting funding to acquire and operate HPC resources for themselves
- Solution: pool these funds to operate clusters for researchers!
- The faculty no longer have to devote a grad student to managing their cluster!
- You get out at least what you put in
- Buy 1 node or 100, you get a queue that guarantees access up to that many CPUs
- But wait, there's more!!
- What if your neighbor isn't using his queue?
- You can use it, but your job is subject to preemption if he wants to run.
- You don't have to do the work
- Your grad student gets to do research rather than run your cluster.
- \quad Nor do you have to provide space in your lab for computers.
- ITaP provides data center space, systems administration, application support.
- Just submit jobs!

SIX COMMUNITY CLUSTERS

7,216 cores
Installed May 2008
Re9red Nov. 2013

$$
\begin{aligned}
& 8,2 n+4 \\
& 8,032 \text { cores }
\end{aligned}
$$

Installed July 2009
24 departments 61 faculty Re9red
Sep. 2014

10,368 cores
Installed April 2012
26 departments 60
faculty
\#175 on June 2013 Top 500

11,088 cores Installed Sept. 2010 17 departments 37 faculty

?

9,280 Xeon cores (69,600 Xeon Phi cores) Installed August 2013 20 departments 51 faculty (as of Aug. 2014) \#39 on June 2014 Top 500
－ 165 ＂owners＂
－～1200 active users
－259M hours provided in 2014
－Nationally，the gold standard for condo－style computing
－Today，the program is part of many departments＇faculty recruiting process．
－A selling point to attract people to Purdue！
－Please feel free and have your faculty candidates meet with us during recruitment！

IMPACT

Department Cores
Electrical and Computer Engineering 9816
OSG CMS Tier2 9168
Mechanical Engineering 7008
AeronauNcs and AstronauNcs 5048
Earth, Atmospheric, and Planetary Sciences 3632
Chemistry Materials 1936
Engineering Chemical 1504
Engineering Biological 1144
Sciences 1104
Medicinal Chemistry and Molecular Pharmacology 1104
MathemaNcs 720
Physics 664
Biomedical Engineering 640
StaNsNcs 520
Nuclear Engineering 492
Civil Engineering 448
Agricultural and Biological Engineering 416
Industrial and Physical Pharmacy 384
Commercial Partners 304
Computer Science 280
Other College of Agriculture 256
Agronomy 240
Forestry and Natural Resources 64

IMPACT

Ans w w +
 *W以 N K -

HPC Awards Non-
HPC Awards

Community Clusters to Cluster Communities

What neighborhoods are in our community?

HPC (Rice): MulNple cores or nodes, probably MPI. Benefit from highperformance network and parallel filesystem. The vast majority of campus -80% of all work!

HTC (Hammer): Primarily single core. CPU-bound. No need for highperformance network.

Life Science/Big Memory (Snyder):
Use enNre node to get large amounts of memory. Less need for highperformance network. Needs large, fast storage.

8 \%

- Research computing has historically provided some storage for research data for HPC users:
- Archive (Fortress)
- Actively running jobs (Cluster Scratch - Lustre)
- Home directories
... And Purdue researchers have PURR to package, publish, and describe research data.

THE SERVICE

HPC researchers can at last purchase storage!

A storage service for research to address many common requests:

- 100G available at no charge to research groups
- Mounted on all clusters and exported via CIFS to labs
- Not scratch: Backed up via snapshots, with DR coverage
- Data in Depot is owned by faculty member!
- Sharing ability - Globus, CIFS, and WWW
- Maintain group-wide copies of application software or shared data

Well received!

- In less than 7 months, over 105 research groups are participating.
- Many are not HPC users!
- Half a PB in use since November
- A research group purchasing space has purchased, on average, 8.6TB.

Approximately 2.25 PB of IBM GPFS

Hardware provided by a pair of Data Direct Networks SFA12k arrays, one in each of MATH and FREH datacenters
$160 \mathrm{~Gb} / \mathrm{sec}$ to each datacenter

5x Dell R620 servers in each datacenter

DESIGN TARGETS

The Research Data Depot Can do:

Depot Requirements	Previous solu9ons
At least 1 PB usable capacity	>1 PB
$40 \mathrm{~GB} /$ sec throughput	$5 \mathrm{~GB} / \mathrm{sec}$
< 3ms average latency, < 20 ms maximum latency	Variable
100k IOPS sustained	55 k
$300 \mathrm{MB} /$ sec min client speed	$200 \mathrm{MB} / \mathrm{sec}$ max
Support 3000 simultaneous clients	Yes
Filesystem snapshots	Yes
MulN--site replicaNon	No
Expandable to 10 PB	Yes
Fully POSIX compliant, including parallel I/O	No

- It's important to think of Depot as a "data service" - not "storage"
- It is not enough to just provide infrastructure
- "Here's a mountpoint, have fun"
- Our goal: enabling the frictionless use and movement of data
- Instrument -> Depot -> Scratch -> Fortress -> Collaborators -> and back
- Continue to improve access to non-UNIX users
- Collaborations on multi-disciplinary grant proposals, both internal and external
- Developing customized Data Management Plans
- Organizing your data
- Describing your data
- Sharing your data
- Publishing your datasets
- Preserving your data
- Education on data management best practices

2014 network improvements

- $100 \mathrm{~Gb} / \mathrm{sec}$ WAN connections
- Research Core
- $160 \mathrm{~Gb} /$ sec core to each resource (up from 40)
- $20 \mathrm{~Gb} / \mathrm{sec}$ research core to most of campus
- Campus Core Upgrade
h I ps://www.rcac.purdue.edu/news/681

GLOBUS

Globus:

Transfer and share large datasets....
.... With dropbox-like characteristics
.... Directly from your own storage system!

Data moved in 2014:
 13 TB in, 19TB out
 200k files both directions
 55 unique users

In progress:
 Globus interface to Fortress

h"ps://transfer.rcac.purdue.edu

- Programming practices - Software Carpentry
- Parallel Programming - MPI, OpenMP
- Big Data
- Matlab
- Accelerators - Xeon Phi, OpenACC, CUDA
- UNIX 101
- Effective use of Purdue research clusters

NEED HELP?

of thatiofrof
 2-sAn H N N A N N , v

SCHOLAR

- Need to teach students to use HPC in a course?
- Scholar cluster is available to any instructor at no cost.

Spring 2015:	EAPS
CS	AGRY
STAT	ANSC
CHEM	ChemE

Bring in our expertise to help your researchers create or modify software to take advantage of the latest technology in advanced computation, web frameworks, data analysis, visualization, sharing, and management.

Our software development effort can be funded through grant awards or contracts based on developer time.

