People in developed countries are estimated to spend 90% of their time indoors whether at home, at work, or commuting between the two. Consequently, our exposure to air pollutants happens mainly indoors despite regulations focusing on outdoor air quality. Many pollutants exist indoors through activities such as cooking, cleaning and home improvements. In addition, outdoor pollutants make their way indoors through windows and doors, as well as the building fabric. These pollutants can then undergo a number of chemical and physical transformations, leading to the formation of a myriad of different secondary products. Many of the products formed are chemically complex and difficult to measure experimentally. Also, given the wide variety of locations, building types and operating conditions, measurements made in one place are not necessarily representative for others. Our best way of understanding indoor air chemistry is therefore through modeling. Ideally, this would involve using a model that encompassed all aspects of indoor air chemistry.
MOdeling Consortium for Chemistry of Indoor Environments (MOCCIE) is funded by the Alfred P. Sloan foundation within the Chemistry of Indoor Environments (CIE) Program. The project started in July 2017. MOCCIE brings together modeling experts from a number of different fields to begin to develop comprehensive, integrated physical-chemical models that include a realistic representation of gas-phase, aerosol-phase and surface chemistry in indoor environments and how occupants, indoor activities and buildings influence indoor processes. It will also lay the foundations for an eventual integrated model for indoor air chemistry. Such a model could then be used to predict when indoor air chemistry processes might cause harm to human health and wellbeing.
MOCCIE Investigators:
PI: Manabu Shiraiwa Professor Department of Chemistry University of California, Irvine m.shiraiwa@uci.edu Expertise: Kinetic modeling on multiphase chemistry |
|
Co-PI: Nicola Carslaw Professor Environment Department University of York, UK nicola.carslaw@york.ac.uk Expertise: Indoor gas-phase chemistry model |
|
Co-I: Douglas J. Tobias Professor Department of Chemistry University of California, Irvine dotobias@uci.edu Expertise: Molecular dynamic simulations |
|
Co-I: Michael S. Waring Professor Department of Civil, Architectural and Environmental Engineering Drexel University msw59@drexel.edu Expertise: Secondary organic aerosol modeling |
|
Co-I: Donghyun Rim Associate Professor Department of Architectural Engineering Pennsylvania State University dim@psu.edu Expertise: Computational fluid dynamics modeling |
|
Co-I: Glenn Morrison Professor Department of Environmental Sciences and Engineering University of North Carolina, Chapel Hill gcm@mst.edu Expertise: Human envelope modeling |
|
Co-I: John Little Professor Department of Civil and Environmental Engineering Virginia Tech jcl@vt.edu Expertise: Organic film modeling |
|
Co-I: Andreas Zuend Associate Professor Department of Atmospheric and Oceanic Sciences McGill University andreas.zuend@mcgill.ca Expertise: Thermodynamic modeling |
Postdocs:
Pascale Lakey (UCI), Michael von Domaros (UCI), Magda Kruza (York), Freja Oesterstroem (York), Chunyi Wang (VT), David Shaw (York), Meredith Schervish (UCI)
Students:
Saleh Riahi (UCI), Krista Parry (UCI), Elianna Frank (UCI), Bryan Cummings (Drexel), Youngbo Won (PSU), Azin Eftekhari (UNC), Clara Eichler (UNC), Suwhan Yee (PSU), Gen Pei (PSU), Toby Carter (York), John Liek (McGill), Zixuan Shen (McGill)
MOCCIE Publications
1) Rim, D.*, Gall, E. T., Ananth, S. & Won, Y.: Ozone reaction with human surfaces: Influences of surface reaction probability and indoor air flow condition, Build. Environ., 130, 40-48, 2018
2) Y. Fang, S. Riahi, A. T. McDonald, M. Shrestha, D. J. Tobias & V. H. Grassian, What Is the Driving Force behind the Adsorption of Hydrophobic Molecules on Hydrophilic Surfaces?, J. Phys. Chem. Lett., 10, 468-473, 2019.
3) Fang, Y., Lakey, P., Riahi, S., McDonald, A., Shrestha, M., Tobias, D. J.*, Shiraiwa, M.* and Grassian, V.*: A Molecular Picture of Surface Interactions of Organic Compounds on Prevalent Indoor Surfaces: Limonene Adsorption on SiO2, Chem. Sci., 10, 2906-2914, 2019. (highlighted as Chem. Sci. pick)
4) Cummings, B. E. and M. S. Waring*: Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS), Indoor Air, 29(4): 616-629, 2019.
5) Lakey, P. S. J., Morrison, G. C., Won, Y., Parry, K. M., von Domaros, M., Tobias, D. J.*, Rim, D.*, and Shiraiwa, M.*: The impact of clothing on ozone and squalene ozonolysis products in indoor environments, Commun. Chem., 2, 56, 2019.
6) M. Shiraiwa*, N. Carslaw, D. J. Tobias, M. Waring, D. Rim, G. Morrison, P. Lakey, M. Kruza, M. von Domaros, B. Cummings and Y. Won, Modelling Consortium for Chemistry of Indoor Environments (MOCCIE): Integrating chemical processes from molecular to room scales, Environ. Sci. Processes Impacts, 21, 1240 – 1254, 2019.
7) Zhou, S., Hwang, B. C. H., Lakey, P. S. J., Zuend, A., Abbatt, J. P. D.* and Shiraiwa, M.*: Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations, Proc. Natl. Acad. Sci. U.S.A., 116(24):11658-11663, 2019.
8) Morrison, G.*, Lakey, P. S. J., Abbatt, J., Shiraiwa, M.*, Indoor boundary layer chemistry modeling, Indoor Air, 29 (6), 956-967, 2019.
9) Y. Won, M. Waring, D. Rim: Understanding the spatial heterogeneity of OH due to indoor photolysis of HONO using Computational Fluid Dynamics (CFD) simulations, Environ. Sci. & Technol., 53, 14470-14478, 2019.
10) Mattila, J. M., Lakey, P. S. J., Shiraiwa, M., Wang, C., Abbatt, J. P. D., Arata, C., Goldstein, A. H., Ampollini, L., Katz, E. F., DeCarlo, P. F., Zhou, S., Kahan, T. F., Cardoso-Saldaña, F. J., Ruiz, L. H., Abeleira, A., Boedicker, E. K., Vance, M. E. and Farmer, D. K.: Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning, Environ. Sci. Technol., 54, 1730-1739, 2020.
11) Yeoman, A., M. Shaw, N. Carslaw, T. Murrells, N. Passant, and A.C. Lewis, Simplified speciation and atmospheric VOC emission rates from non-aerosol personal care products, 30, 459-472, Indoor Air, 2020.
12) W. Wang, M. J. Ezell, P. S. J. Lakey , K. Aegahegn, M. Shiraiwa* & B. J. Finlayson-Pitts*, Unexpected Formation of Oxygen-Free Products and Nitrous Acid from the Ozonolysis of the Neonicotinoid Nitenpyram, Proc. Natl. Acad. Sci. U.S.A., 117, 11321-11327, 2020.
13) Y. Won, P. S. J. Lakey, G. Morrison, M. Shiraiwa & D. Rim, Spatial distributions of ozonolysis products from human surfaces in ventilated rooms, 10.1111/ina.12700, Indoor Air, 2020
14) Cummings, B. E., Li, Y., DeCarlo, P. F., Shiraiwa, M., & Waring, M. S. (2020). Indoor aerosol water content and phase state in US residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. Environmental Science: Processes & Impacts, 22(10), 2031-2057.
15) Von Domaros, M., Lakey, P. S. J., Shiraiwa, M.* and Tobias, D. J.*: Multiscale Modeling of Human Skin Oil-Induced Indoor Air Chemistry: Combining Kinetic Models and Molecular Dynamics, J. Phys. Chem. B, 124, 18, 3836-3843, 2020.
16) Kruza, M., McFiggans G., Waring M.S., Wells J.R., Carslaw N. Indoor secondary organic aerosols: towards an improved representation of their formation and composition in models. Atmos. Environ., 240, 117784, 2020a.
17) Wang, Z, S. F. Kowal, N. Carslaw, T. F. Kahan, Photolysis driven indoor air chemistry following cleaning of hospital wards, Indoor Air, 117, 11321-11327, 2020.
18) Ault, A.P., V. H. Grassian, N. Carslaw, D. B. Collins, H. Destaillats, D.J. Donaldson, D. K. Farmer, J. L. Jimenez, G. C. Morrison, R. E. O’Brien, M. Shiraiwa, M. E. Vance, J. R. Wells, and W. Xiong, Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces, Chem, 6, (12), 3203-3218, 2020.
19) A Eftekhari, H Frederiksen, AM Andersson, C Weschler G Morrison. Estimating transdermal uptake of diethylphthalate, dibutylphthalate and butylparaben from lotion using fugacity, a chemical activity approach. Environ. Sci. Techonol., in press, 2020.
20) E. S. Frank, H. Fan, M. Shrestha, S. Riahi, D. J. Tobias,* and V. H. Grassian,* Impact of adsorbed water on the interaction of limonene with hydroxylated SiO2: Implications of π-hydrogen bonding for surfaces in humid environments, J. Phys. Chem. A 124, 10592-10599, 2020.
21) J. Liu, H. Deng, P. S. J. Lakey, H. Jiang, M. Mekic, X. Wang, M. Shiraiwa*, S. Gligorovski*, Unexpectedly high indoor HONO concentrations associated with photochemical NO2 transformation on glass windows, submitted to Environ. Sci. Technol. 54, 15680-15688, 2020.
22) Zhou, S., Liu, Z., Wang, Z., Young, C. J., VandenBoer, T. C., Guo, B. B., Zhang, J., Carslaw, N., and Kahan, T. F.: Hydrogen Peroxide Emission and Fate Indoors during Non-bleach Cleaning: A Chamber and Modeling Study, Environ. Sci. Technol., 54, 15643-15651, 2020.
23) Or, V. W., Wade, M., Patel, S., Alves, M. R., Kim, D., Schwab, S., Przelomski, H., O’Brien, R., Rim, D., Corsi, R. L., Vance, M. E., Farmer, D. K. and Grassian, V. H.: Glass surface evolution following gas adsorption and particle deposition from indoor cooking events as probed by microspectroscopic analysis, Environ. Sci. Processes Impacts, 22, 1698-1709, 2020.
24) Eichler, C. M. A.; Hubal, E. A. C.; Xu, Y.; Cao, J.; Bi, C.; Weschler, C. J.; Salthammer, T.; Morrison, G. C.; Koivisto, A. J.; Zhang, Y.; Mandin, C.; Wei, W.; Blondeau, P.; Poppendieck, D.; Liu, X.; Delmaar, C. J. E.; Fantke, P.; Jolliet, O.; Shin, H.-M.; Diamond, M. L.; Shiraiwa, M.; Zuend, A.; Hopke, P. K.; von Goetz, N.; Kulmala, M.; Little, J. C., Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environ. Sci. Technol., 55, 25-43, 2021.
25) Morrison, G. C., Eftekhari, A., Majluf, F., and Krechmer, J. E.: Yields and Variability of Ozone Reaction Products from Human Skin, Environ. Sci. Technol., 55, 179-187, 2021.
26) Eftekhari, A., Hill, J. T., and Morrison, G. C.: Transdermal uptake of benzophenone-3 from clothing: comparison of human participant results to model predictions, Journal of Exposure Science & Environmental Epidemiology, 31, 149-157, 2021.
27) D. Mendez-Jimenez, P. S. J. Lakey, M. Shiraiwa, H. Jung. Behavior of carbon monoxide, nitrogen oxides, and ozone in vehicle cabin with a passenger. Environ. Sci.: Processes Impacts DOI: 10.1039/d0em00395f, 2021
28) L. Huang, E. S. Frank, S. Riahi, D. J. Tobias,* and V. H. Grassian,* Adsorption of constitutional isomers of cyclic monoterpenes on hydroxylated silica surfaces, J. Chem. Phys., 154, 124703, 2021.
29) Song, Y.-C., Lilek, J., Lee, J. B., Chan, M. N., Wu, Z., Zuend, A., and Song, M.: Viscosity and phase state of aerosol particles consisting of sucrose mixed with inorganic salts, Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, 2021.
30) Huang, Y., Mahrt, F., Xu, S., Shiraiwa, M., Zuend, A., and Bertram, A. K.: Coexistence of three liquid phases in individual atmospheric aerosol particles, PNAS, 118, e2102512118, , 2021.
31) Cummings, B. E., Avery, A. M., DeCarlo, P. F. and Waring, M. S.: Improving Predictions of Indoor Aerosol Concentrations of Outdoor Origin by Considering the Phase Change of Semivolatile Material Driven by Temperature and Mass-Loading Gradients, Environ. Sci. Technol., 55, 9000-9011, 10.1021/acs.est.1c00417, 2021.
32) Pei, G.,, Rim, D. Quality control of computational fluid dynamics (CFD) model of ozone reaction with human surface: Effects of mesh size and turbulence model. Build. Environ., 189, 107513., 2021.
33) Kruza, M., Shaw, D., Shaw, J., Carslaw, N. (2021), ‘Towards improved models for indoor air chemistry: A Monte Carlo simulation study’, Atmos. Environ. 262, 118625.
34) Shaw, D. & Carslaw, N. (2021), ‘INCHEM-Py: An open source Python box model for indoor air chemistry’, J. Open Source Softw., 6 (63), 3224. DOI: 10.21105.joss.03110.
35) M. von Domaros, Y. Liu, J. Butman, E. Perlt, F. M. Geiger,* and D. J. Tobias,* Molecular orientation at the squalene:air interface from sum frequency generation spectroscopy and atomistic modeling, J. Phys. Chem. B, 125, 3932-3941, 2021.
36) L. Huang, E. S. Frank, D. J. Tobias,* and V. H. Grassian,* Heterogeneous interactions of prevalent indoor oxygenated organic compounds on hydroxylated SiO2 surfaces, Environ Sci. Technol., 55, 6623-6630, 2021.
37) Lakey, P. S. J., Eichler, C. M. A., Wang, C., Little, J. C. and Shiraiwa, M.: Kinetic multi-layer model of film formation, growth, and chemistry (KM-FILM): Boundary layer processes, multi-layer adsorption, bulk diffusion, and heterogeneous reactions, Indoor Air, 31, 2070-2083, 2021.
38) P. S. J. Lakey#, Y. Won#, D. Shaw, F. F. Østerstrøm, J. Mattila, E. Reidy, B. Bottorff, C. Rosales, C. Wang, L. Ampollini, S. Zhou, A. Novoselac, T. F. Kahan, P. F. DeCarlo, J. P. D. Abbatt, P. S. Stevens, D. K. Farmer, N. Carslaw, D. Rim,* M. Shiraiwa.* Spatial and temporal scales of variability in indoor air constituents. Comms. Chem. 4, 110, 2021. (#equal contribution)
39) Eftekhari, A. and Morrison, G. C.: Exposure to oxybenzone from sunscreens: daily transdermal uptake estimation, J. Expo. Sci. Environ. Epidemiol., 10.1038/s41370-021-00383-9, 2021.
40) R. E. O’Brien, Y. Li, K. J. Kiland, E. F. Katz, V. W. Or, E. Legaard, E. Q. Walhout, C. Thrasher, V. H. Grassian, P. F. DeCarlo, A. K. Bertram and M. Shiraiwa. Emerging investigator series: chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. Environ. Sci.: Processes Impacts 23, 559-568, 2021.
41) L. Huang, E. S. Frank, S. Riahi, D. J. Tobias,* and V. H. Grassian,* Adsorption of constitutional isomers of cyclic monoterpenes on hydroxylated silica surfaces, J. Chem. Phys., 154,124703 (2021).
42) Patel, S., Rim, D., Sankhyan, S., Novoselac, A., & Vance, M. E. (2021). Aerosol dynamics modeling of sub-500 nm particles during the HOMEChem study. Environmental Science: Processes & Impacts, 23(11), 1706-1717.
43) A. K. Hua#, P. S. J. Lakey#, M. Shiraiwa.* Multiphase Kinetic Multilayer Model Interfaces for Simulating Surface and Bulk Chemistry for Environmental and Atmospheric Chemistry Teaching. J. Chem. Educ. DOI: 10.1021/acs.jchemed.1c00931 2022. (#equal contribution)
44) Lilek, J. and Zuend, A.: A predictive viscosity model for aqueous electrolytes and mixed organic–inorganic aerosol phases, Atmos. Chem. Phys., 22, 3203–3233, 2022.
45) Z. Zhou#, P. S. J. Lakey#, M. von Domaros, N. Wise, D. J. Tobias, M. Shiraiwa, and J. P. D. Abbatt. Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Condensed-Phase Products and Kinetic Multilayer Modelling. Environ Sci. Technol., 56, 7716-7728, 2022. (#equal contribution).
46) H. Fan, E. S. Frank, P. S. J. Lakey, M. Shiraiwa,* D. J. Tobias,* and V. H. Grassian.* Heterogeneous Interactions between Carvone and Hydroxylated SiO2. J. Phys. Chem. C, 126, 6267-6279, 2022.
47) M. Yao, P. S. J. Lakey, M. Shiraiwa, B. Zhao. Volatile Products Generated from Reactions between Ozone and Human Skin Lipids: A Modelling Estimation. Build. Environ.,217, 109068, 2022.
48) N. Zannoni, P. S. J. Lakey, Y. Won, M. Shiraiwa, D. Rim, C. J. Weschler, N. Wang, L. Ernle, M. Li, G. Bekö, P. Wargocki, J. Williams. The Human Oxidation Field. Science, 377, 1071-1077, 2022.
49) D. Mendez-Jimenez, P. S. J. Lakey, G. Johnson, M. Shiraiwa, H. Jung. The effect of built-in and portable ionizers on in-cabin ozone concentrations in light-duty vehicles. Environ. Sci.: Processes Impacts, DOI: 10.1039/D2EM00129B, 2022.
50) W. Wang, X. Wang, P. S. J. Lakey, M. J. Ezell, M. Shiraiwa, B. J. Finlayson-Pitts. Gas Phase and Gas–Solid Interface Ozonolysis of Nitrogen Containing Alkenes: Nitroalkenes, Enamines, and Nitroenamines. J. Phys. Chem. A, 126, 5398-5406, 2022.
51) H. Deng, P. S. J. Lakey, Y. Wang, P. Li, J. Xu, H. Pang, J. Liu, X Xu, X Li, X. Wang, Y. Zhang, M. Shiraiwa, S. Gligorovski. Daytime SO2 Chemistry on Ubiquitous Urban Surfaces as a Source of Organic Sulfur Compounds in Ambient Air. Science Advances, 8, eabq6830, 2022.
52) Kruza, M., Shaw, D., Shaw, J., Carslaw, N. (2021), ‘Towards improved models for indoor air chemistry: A Monte Carlo simulation study’, Atmos. Environ. 262, 118625.
53) Carslaw, N. and Shaw, D. (2022), ‘Modification of cleaning product formulations could improve indoor air quality’, Indoor Air, 32 (3):1.
54) Wang, Z., D. Shaw, T. Kahan, C. Schoemaecker and N. Carslaw A modelling study of the impact of photolysis on indoor air quality. Indoor Air, https://doi.org/10.1111/ina.13054, 2022.
55) H. Fan, E. S. Frank, D. J. Tobias*, V.H. Grassian*, Interactions of Limonene and Carvone on Titanium Dioxide Surface, Phys. Chem. Chem. Phys., accepted, 2022.
56) Cummings, B., Shiraiwa, M. and Waring, M.: Phase state of organic aerosols may limit temperature-driven thermodynamic repartitioning following outdoor-to-indoor transport, Environ. Sci. Processes Impacts, 10.1039/D2EM00093H, 2022.
57) Jeong, R., Lilek, J., Zuend, A., Xu, R., Chan, M. N., Kim, D., Moon, H. G., and Song, M.: Viscosity and physical state of sucrose mixed with ammonium sulfate droplets, Atmos. Chem. Phys., 22, 8805–8817, 2022.
58) Pei, G., Xuan, Y., Morrison, G., & Rim, D. Understanding Ozone Transport and Deposition within Indoor Surface Boundary Layers. Environ. Sci. Technol. 56, 12, 7820–7829, 2022.
59) Fan, H., Frank, E. S., Lakey, P. S. J., Shiraiwa, M.*, Tobias, D. J.* and Grassian, V. H.*: Heterogeneous Interactions between Carvone and Hydroxylated SiO2, J. Phys. Chem. C, 126, 6267-6279, 2022.
60) Morrison, G., Eftekhari, A., Lakey, P., Shiraiwa, M., Cummings, B., Waring, M. and Williams, B.: Partitioning of reactive oxygen species from indoor surfaces to indoor aerosols, Environ. Sci. Processes Impacts, 24, 2310-2323, 2022.
61) Fan, H., Lakey, P. S. J., Frank, E. S., Tobias, D. J., Shiraiwa, M.* and Grassian, V. H.*: Comparison of the Adsorption–Desorption Kinetics of Limonene and Carvone on TiO2 and SiO2 Surfaces under Different Relative Humidity Conditions, J. Phys. Chem. C, 126, 21253-21262, 2022.
62) R Habre, D Dorman, J Abbatt, W Bahnfleth, E Carter, D Farmer, G Gawne-Mittelstaedt, A Goldstein, V Grassian, G Morrison, J Peccia, D Poppendieck, K Prather, M Shiraiwa, H Stapleton, M Williams, M Harries. Why indoor chemistry matters: A National Academies consensus report. Environ. Sci. Technol., 56 (15), 10560-10563, 2022.
63) Masoud, C. G., Li, Y., Wang, D. S., Katz, E. F., DeCarlo, P. F., Farmer, D. K., Vance, M. E., Shiraiwa, M. and Hildebrandt Ruiz, L.: Molecular composition and gas-particle partitioning of indoor cooking aerosol: Insights from a FIGAERO-CIMS and kinetic aerosol modeling, Aerosol Sci. Technol., 1-24, 10.1080/02786826.2022.2133593, 2022.
64) Lakey, P. S. J., Zuend, A., Morrison, G., Berkemeier, T., Wilson, J., Arata, C., Goldstein, A., Wilson, K. R., Wang, N., Williams, J., Abbatt, J. and Shiraiwa, M.: Emerging investigator series: Quantifying the impact of relative humidity on human exposure to gas phase squalene ozonolysis products, Environ. Sci. Atmos., 3, 49-64, 2023.
65) Schervish, M. and Shiraiwa, M.*: Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning, Atmos. Chem. Phys., 23, 221-233, 2023.
66) E. S. Frank, H. Fan, V. H. Grassian*, and D. J. Tobias*, Adsorption of 6-MHO on two indoor relevant surface materials: SiO2 and TiO2, Phys. Chem. Chem. Phys., 25, 3930-3941, 2023.
67) Carter, T. J., Poppendieck, D. G., Shaw, D., Carslaw. N.: A Modelling Study of Indoor Air Chemistry: The Surface Interactions of Ozone and Hydrogen Peroxide, Atmos. Environ., 297, 119598, 2023.
68) Lakey, P. S. J.*, Cummings, B., Waring, M., Morrison, G. and Shiraiwa, M.*: Effective mass accommodation for partitioning of organic compounds into surface films with different viscosities, Environ. Sci. Process. Impacts, 25, 1464-1478, 2023.
69) Schervish, M, Donahue N.M., and Shiraiwa M.: Effects of volatility, viscosity, and non-ideality on particle–particle mixing timescales of secondary organic aerosols, Aerosol Sci. Technol., 2023.