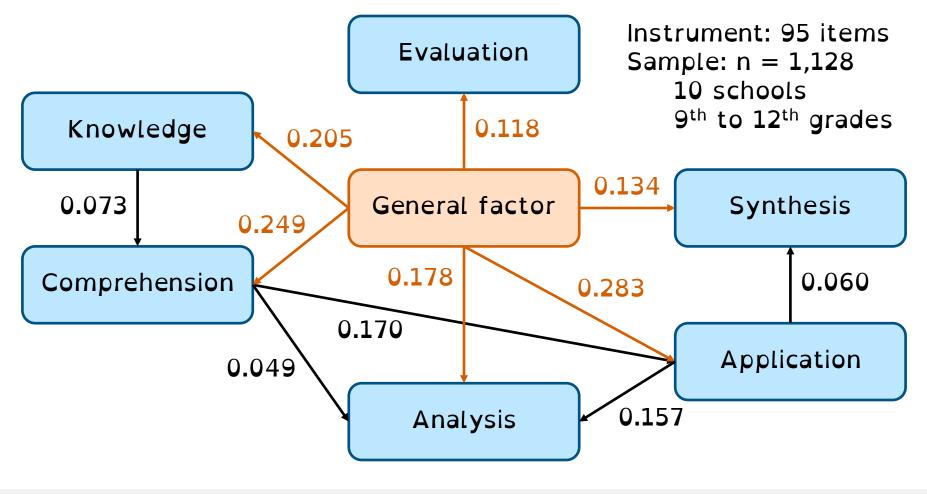

A two-dimensional, non-hierarchical framework of Bloom's taxonomy for biology

UC STEM Lecturer Education Consortium September 20, 2014 | Irvine, CA

Stanley M. Lo University of California, San Diego


Bloom and Krathwohl 1956 | Anderson and Krathwohl 2001

STEM LEC | 09/20/2014 | 2

Rationale: Why bother with a developed framework?

- 1. Biology discipline-based education literature focuses on original Bloom's taxonomy
 - Original Bloom's taxonomy is psychometrically invalid

Underlying structure of original Bloom's taxonomy

American Educational Research Journal (1973) 10: 253-262

"Knowledge" is not consistent with the taxonomy

 $\begin{array}{l} \mbox{Model 1} \\ \mbox{Knowledge} \rightarrow \mbox{Comprehension} \rightarrow \mbox{Application} \\ \rightarrow \mbox{Analysis} \rightarrow \mbox{Synthesis} \rightarrow \mbox{Evaluation} \end{array}$

Model	χ ²	p	RMSD	Largest first derivative
1	380.34	<0.05	0.041	Knowledge \rightarrow Synthesis
2	124.77	<0.05	0.018	Knowledge \rightarrow Analysis
3	42.00	<0.05	0.017	Knowledge \rightarrow Evaluation
4	23.10	<0.05	0.007	Comprehension \rightarrow Analysis

Model 4

 $\textbf{Comprehension} \rightarrow \textbf{Application} \rightarrow \textbf{Analysis} \rightarrow \textbf{Synthesis} \rightarrow \textbf{Evaluation}$

American Educational Research Journal (1981) 18: 93-101

A. FactualB. C. ConceptualD. Metacognitive1. Remember2. UnderstandI.3. Apply4. AnalyzeI.5. Evaluate6. CreateIndex	Revised Bloom's taxonomy: Two dimensions				
FactualConceptual ProceduralMetacognitive1. Remember2. UnderstandI3. Apply4. Analyze5. Evaluate					
2. Understand 3. Apply 4. Analyze 5. Evaluate					
3. Apply 4. Analyze 5. Evaluate	1. Remember				
4. Analyze S. Evaluate	2. Understand				
5. Evaluate	3. Apply				
	4. Analyze				
6. Create	5. Evaluate				
	6. Create				

Anderson and Krathwohl 2001

Rationale: Why bother with a developed framework?

- 1. Biology discipline-based education literature focuses on original Bloom's taxonomy
- 2. Develop guidelines and rubric for revised Bloom's taxonomy for biology
- Analyze underlying structure to revised Bloom's taxonomy (at least in biology)

Data collection and analysis

Data source

- Total of 1,432 items
- Public sources: AP Biology and MCAT practice problems
- Introductory and advanced biology courses at Northwestern: biochemistry, cell biology, genetics, immunology, molecular biology, plant biology, and physiology

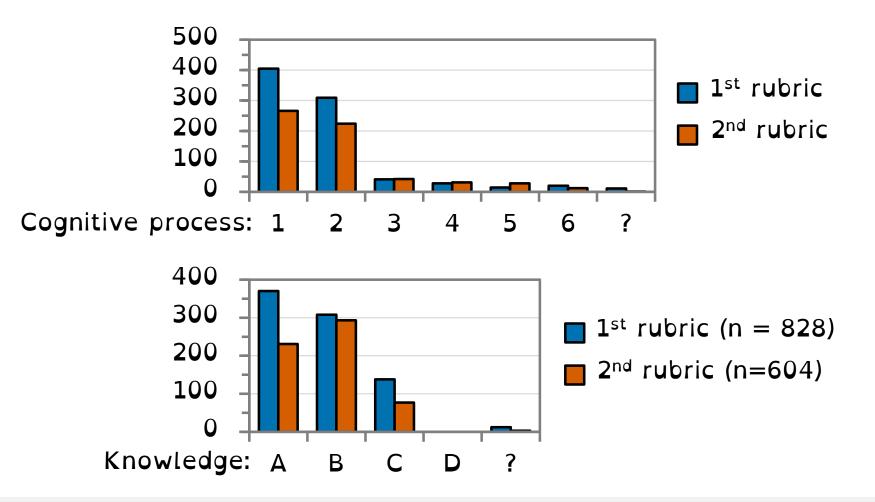
Coders

- Undergraduates who completed at least half of the introductory biology course sequence at beginning of project
- Selected from an application based on course grades and written responses to open-ended questions

Coders training and reliability

Training:

Coding:


- Read literature
- Write our own problems
- Develop coding scheme
- Discuss 110 items

- Adjust coding scheme (1st rubric)
- Code and discuss 718 items
- Revise coding scheme (2nd rubric)
- Code and discuss 604 items

Reliability: Inter-rater agreement | Cohen's K

	Training 1	Coding 1	Coding 2
Cognitive process	0.44 0.23	0.76 0.60	0.72 0.58
Knowledge dimension	0.43 0.14	0.70 0.52	0.73 0.55

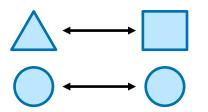
Dataset: Distribution in the two dimensions

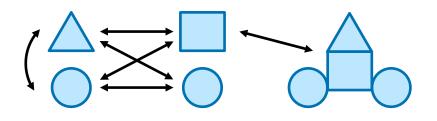
Anatomy of Bloom's taxonomy for biology

1. Remember: Retrieve relevant information				
	Alternatives	Definition	Features	
1.1 Recognizing	Identifying	Identify something in an unaltered form		
1.2 Recalling	Retrieving	Retrieve relevant information from memory		

2. Understand: Construct meaning from given information

	Alternatives	Definition	Features
2.1 Interpreting	-	Change from one form of representation to another	


Examples for Bloom's taxonomy for biology


<u>6. Create</u>: Put elements together into a novel pattern; use knowledge to solve novel problems or situations related to topic (6.1 generating, 6.2 planning, 6.3 producing)

Understand vs. analyze: How are they different?

2. Understand: Construct meaning from given information 4. Analyze: Deconstruct material and understand parts and relationships

- 2.3 Classifying 4.2 Organizing
- 2.6 Comparing ••••••
- 2.7 Explaining
- 4.1 Differentiating
- 4.3 Attributing •

Knowledge dimension of Bloom's taxonomy

A. Factual knowledge

- Aa. Terminology
- Ab. Specific detail or element

B. Conceptual knowledge

- Ba. Classifications and categories
- Bb. Principles and generalizations
- Bc. Theories

C. Procedural knowledge

- Ca. Discipline-specific skills and algorithms
- Cb. Discipline-specific techniques and methods
- Cc. Criteria for determining when to use a procedure

D. Metacognitive knowledge

- Da. Strategic knowledge
- Db. Cognitive tasks, contextual and conditional knowledge
- Dc. Self-knowledge

Acknowledgements

Tori Alex Larsen Yee

Faculty colleagues

NORTHWESTERN UNIVERSITY

STEM LEC | 09/20/2014 | 15

A two-dimensional, non-hierarchical framework of Bloom's taxonomy for biology

UC STEM Lecturer Education Consortium September 20, 2014 | Irvine, CA

Stanley M. Lo University of California, San Diego

