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We consider a smooth Lagrangian subvariety Y in a smooth algebraic variety X with

an algebraic symplectic from. For a vector bundle E on Y and a choice Oh of deforma-

tion quantization of the structure sheaf OX , we establish when E admits a deformation

quantization to a module over Oh. If the necessary conditions hold, we describe the set

of equivalence classes of such quantizations.

1 Introduction

Consider a smooth algebraic variety X over a field C of characteristic zero with an

algebraic symplectic form ω ∈ H0(X ,�2
X ), and assume that we are given a deformation

quantization Oh of the structure sheaf OX which agrees with ω. This means that Oh

is a Zariski sheaf of flat associative C[[h]]-algebras on X , for which we can find local

C[[h]]-module isomorphisms η : Oh � OX [[h]] such that its product ∗ satisfies

a ∗ b ≡ ab+ 1

2
hP(da,db) (mod h2)

where a,b are local sections of OX (viewed as local sections of Oh using η) and P ∈
H0(X ,�2TX ) is the Poisson bivector obtained from ω via the isomorphism TX → �1

X

induced by the same ω.

Given such data and a coherent sheaf E ofOX -modules, we could look for a defor-

mation quantization of E as well. Thus, we want a Zariski sheaf Eh of Oh-modules which
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2 V. Baranovsky and T. Chen

is flat over C[[h]], complete in (h)-adic topology and such that the Oh-action reduces

modulo h to the original action of OX on E. The usual questions are: does Eh exist at all,
if yes then how many such sheaves can we find?

In full generality, this is a difficult problem. One possible simplification is to

assume that E is a direct image of a vector bundle on a closed smooth subvariety j :

Y ↪→ X . We will denote this bundle by E as well (i.e., abusing notation we think of any

sheaf on Y as a sheaf on X using the direct image functor j∗).

In general, Eh will not exist at all. The first observation is that Y must be

coisotropic with respect to the symplectic form ω. In other words, the bivector P projects

to a zero section of �2N , where N is the normal bundle. See Proposition 2.3.1 in [5]

for the explanation why Y has to be coisotropic (this also follows from the proof of

Gabber’s Integrability of Characteristics Theorem). In this article, we assume that Y

is in fact Lagrangian (i.e., isotropic of dimension 1
2 dimC X ). Then P induces a perfect

pairing between the tangent bundle TY and the normal bundle N of Y , and hence an

isomorphism N∗ � TY . The case when E has rank r = 1 was considered in [6] and here

we deal with general r.

The second observation is that E must carry a structure somewhat similar to a

flat algebraic connection. One could say that the “quasi-classical limit” of Eh is given by

E together with this additional structure, and it is this quasi-classical limit which is

being deformed, not just E.

More details are given in Section 2, and the brief account follows here. A conve-

nient language to use is that of Picard algebroids onY , cf. [3], that is, those Lie algebroids

L which fit a short exact sequence

0 → OY → L → TY → 0

(the trivialization of the sheaf on the left is chosen and formsapart of the structure). Such

algebroids are classified by their characteristic class c(L) with values in the truncated

de Rham cohomology:

H2
F (Y) := H2(Y , 0 → �1

Y → �2
Y → . . .)

One example of such a sheaf is L(Oh) = T orOh
1 (OY ,OY ).

Next, E itself gives an Atiyah Lie algebroid L(E) with its exact sequence

0 → EndOY (E) → L(E) → TY → 0.
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Quantization of Vector Bundles 3

A choice of deformation quantization Eh, or even the isomorphism class of Eh/h2Eh as

a module over Oh/(h2), gives a morphism of Zariski sheaves γ : L(Oh) → L(E) which

agrees with the Lie bracket but not the OY -module structure. One can change the mod-

ule structure on the source of γ , also changing its characteristic class inH2
F (Y), to obtain

a new Picard algebroid L+(Oh) and a morphism of Zariski sheaves γ + : L+(Oh) → L(E)
which now agrees both with the bracket and the OY -module structure. It also embeds

OY → EndOY (E) as scalar endomorphisms and descends to identity on TY . In this

situation, following [3], we say that E is a module over L+(Oh).

Existence of such γ + is a non-trivial condition on E. We will see in Section 2, and

it is only a slight rephrasing of Section 2.3 in [3], that in this case the projectivization

P(E) has a flat algebraic connection and the refined first Chern class c1(E) = c(L(detE)) ∈
H2
F (Y) satisfies the identity

1

r
c1(E) = c(L+(Oh)).

Existence of a full deformation quantization for an L+(Oh)-module E is formu-

lated in terms of the non-commutative period map of [7]—a particular choice of Oh gives

a class

[ω] + hω1 + h2ω2 + · · · ∈ H2
DR(X)[[h]]

in the algebraic de Rham cohomology of X . We will mostly treat the period map as a

black box, appealing to rank 1 results of [6] that will serve as a bridge between the

definitions in [7] and our argument. One remark, for which we are grateful to Alexander

Gorokhovsky, is that it is slightly better to divide this class by h and work with

1

h
[ω] + ω1 + hω2 + h2ω3 + · · ·

since in this case the formulation of our result below will also become invariant under

automorphisms of C[[h]] of the form h �→ h+ h2(. . .).

By the Lagrangian condition, [ω] restricts to zero on Y . The class of c(L(Oh))

in H2
F (Y) is a canonical lift of the restriction j∗ω1 of ω1 under the closed embedding

j : Y → X . We will abuse notation and write j∗ω1 for that lift as well (note however

that in a number of cases of interest, such as X and Y being complex projective, H2
F is

a subspace of H2
DR so equations in the truncated de Rham cohomology may be viewed

as equations in the usual de Rham cohomology). The class ω1 affects the choice of E via
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4 V. Baranovsky and T. Chen

the identity

c(L+(Oh)) = 1

2
c1(KY )+ j∗ω1,

established in Proposition 4.3.5 and Lemma 5.3.5(ii) of [6]. The restrictions of the

remaining classes are also an important ingredient in the main result of our paper:

Theorem 1.1. A rank r vector bundle E on a smooth Lagrangian subvariety j : Y → X

admits a deformation quantization if and only if the following conditions hold:

(1) j∗ωk = 0 in H2
DR(Y) for k ≥ 2;

(2) the projectivization P(E) admits a flat algebraic connection;

(3) the refined first Chern class in H2
F (Y) satisfies

1

r
c1(E) = 1

2
c1(KY )+ j∗ω1;

for the canonical lift of j∗ω1 to H2
F (Y) representing the class of the Picard

algebroid L(Oh) = T orOh
1 (OY ,OY ).

If nonempty, the set of equivalence classes of all rank r deformation quantization on Y

for various E has a free action of the group G of isomorphism classes of OY [[h]]∗-torsors
with a flat algebraic connection. The set of orbits for this action may be identified with

the space of all PGL(r,C[[h]]) bundles with a flat algebraic connection. �

In the C∞ case when a choice of connection is available and the cotangent bundle

of Y serves as a good local model of X near Y , one can say more. In fact, Theorem 6.1 in

[8] gives an explicit and canonical quantized action on half-densities (thus, r = 1), of a

specific quantization of functions on T∗Y .

The paper is organized as follows. In Section 1, we discuss the relevant details

on Lie algebroids and modules over them. In Section 2, we give a definition of Harish

Chandra pairs, introduce the main Harish Chandra pair for this paper and establish

its important algebraic properties. In Section 3, we explain how the Harish Chandra

description arises naturally from the formal Darboux lemma for a deformation quan-

tization, and reformulate our main problem as a lifting problem for transitive Harish

Chandra torsors. In Section 4, we study the lifting problem in three steps and prove the

main results. Finally, in Section 5, we discuss some related open questions.

To the best of our knowledge, quantization for square roots of the canonical

bundle has been discovered (without proof) by M. Kashiwara in [13] in the framework of
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Quantization of Vector Bundles 5

complex analytic contact geometry. Later D’Agnolo and Schapira [11] established a sim-

ilar result for Lagrangian submanifolds of a complex analytic symplectic manifold. In

the C∞ context, some closely related constructions can be found in the work of Nest and

Tsygan [15]. Obstructions to deformation quantization have been also studied by Bor-

demann in [1]. The case of complex tori and quantization of arbitrary sheaves has been

studied by Ben-Bassat, Block and Pantev in [4]. The case of an arbitrary line bundle and

Lagrangian Y was considered in [6]. For general rank r, results on deformations modulo

h3 were obtained in [16] where the relation with projectively flat algebraic connections

has been discussed. We apologize for any possible omissions in the references, asking

to view them as a sign of ignorance rather than arrogance, as the body of literature on

the subject is somewhat disorganized.

Notation: To unload notation we will write Ch for the ring C[[h]] of formal power series

in h and C
∗
h for its multiplicative group. The symbols GLh(r), PGLh(r) will stand for the

groups of Ch-valued points, and similarly for their tangent Lie algebras.

2 Modules Over a Lie Algebroid

In this section we provide more details on the “quasiclassical limit” for a deformation

quantization. To that end, denote by I ⊂ OX the ideal sheaf of Y and recall the isomor-

phism I/I2 � N∗ of coherent sheaves on Y , while also N∗ � TY since Y is Lagrangian. Let

Ih ⊂ Oh be the preimage of I in Oh, with respect to the quotient map Oh → OX . Assume

that a deformation quantization Eh is given and fixed. We will work locally on Y modulo

h2, assuming that local splittings Oh/(h2) � OY + hOY , Eh/h2Eh � E + hE are given. For

Oh these exist by [17] and for Eh the argument is similar, cf., the comments in the last

section.

Choosing a local section a of OX and a local section e of E, we write the deformed

action as

a ∗ e = ae + hγ1(a, e)

If a ∈ I we see that a∗Eh ⊂ hEh. Moreover, if a1,a2 ∈ I thenmodulo h2 we canwrite a1a2 =
a1∗a2−h 1

2P(da1,da2) using our assumption on the product inOh. Since P(da1,da2) ∈ I by

the Lagrangian assumption on Y , this implies that I2 ∗ Eh ⊂ h2Eh. Therefore (hOY + I/I2)

sends E � Eh/hEh to E � hEh/h2Eh, with ha + b sending e to ae + γ1(b, e). Writing out

associativity equations a ∗ (b ∗ e) = (a ∗ b) ∗ e and b ∗ (a ∗ e) = (b ∗ a) ∗ e and comparing

them we get the two conditions

γ1(b,ae)− aγ1(b, e) = P(db,da)e; γ1(ab, e)− aγ1(b, e) = 1

2
P(db,da)e.
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6 V. Baranovsky and T. Chen

Observe also that b �→ P(db, ·) is exactly the isomorphism I/I2 � TY . Therefore ha + b

acts on E by a first order differential operator with scalar principal symbol and we

obtain (locally, at this moment) a map γ : hOY + I/I2 → L(E) with values in the sections

of the Atiyah algebroid of E. This map agrees with Lie brackets if its source is given the

bracket induced by (a,b) �→ P(db,da), (b1,b2) �→ P(db1,db2). If we don’t start with Eh,
just with a deformation modulo h2, we need to assume existence of its extension modulo

h3 to ensure agreement with the bracket. The map γ is not OY -linear but satisfies

γ (f (ha+ b))− f γ (ha+ b) = 1

2
P(db, f ).

To globalize this consider

L(Oh) = Ih/(Ih ∗ Ih) � IY ⊗Oh
OY � T orOh

1 (OY ,OY )

and observe that hOh ⊂ Ih and hence hIh ⊂ (Ih ∗ Ih). This leads to a short exact sequence

0 → OY → L(Oh) → TY → 0

where we use OY � hOh/hIh and Ih/(hOh + Ih ∗ Ih) � I/I2 � TY . In other words, L(Oh) is

a a Picard algebroid on Y in the sense of Section 2 in [3] with the bracket that descends

from (a,b) �→ 1
h (a ∗ b− b ∗ a). Our local computation above gives a morphism of Zariski

sheaves

γ : L(Oh) → L(E)

which agrees with the Lie bracket but satisfies

γ (fx)− f γ (x) = 1

2
x(f )

where f is a locally defined function and x is the image of the local section x of L(Oh) in

TY . So γ fails to be a morphism of OY -modules.

To repair the situationwe use the fact that Picard algebroids form a vector space,

that is, for two algebroids L1,L2 and any pair of scalars λ1, λ2 there is a Picard algebroid

L = λ1L1 + λ2L2 and a morphism of sheaves

sλ1,λ2 : L1 ×TY L2 → L,

cf. Section 2.1. in [3], which on the subbundle copies of OY is given by (a1,a2) �→ λ1a1 +
λ2a2, and on the quotient copies of TY it is given by the identity. The other fact that
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Quantization of Vector Bundles 7

we use is that the Atiyah algebroid of the canonical bundle L(KY ) has a non-OY -linear

splitting sending a vector fields ∂ to the Lie derivative l(∂) on top degree differential

forms, which satisfies

l(f ∂)− fl(∂) = ∂(f ),

cf. Section 2.4 in [3]. So we consider the algebroid

L+(Oh) = L(Oh)+ 1

2
L(KY )

where L(KY ) is the Aityah algebroid of the canonical bundle KY . The expression x �→
s1, 12

(x, l(x)) defines an isomorphism of Zariski sheaves

L(Oh) → L+(Oh)

which agrees with the bracket, descends to identity on TY but fails to be OY -linear

in exactly the same way as it happens for L(Oh) → L(E). Composing the inverse

isomorphism with γ we obtain a morphism of sheaves of OY -modules

γ + : L+(Oh) → L(E)

which is now a morphism of Lie algebroids on Y .

Existence of γ + imposes strong restrictions on E. For instance, composing with

the trace morphism EndOY (E) → OY we get a morphism L+(Oh) → L(det(E)) to the

Atiyah algebroid of the determinant bundle det(E). By construction, this map is multi-

plication by r = rk(E) on the subbundles OY and identity on the quotient bundles TY .

In particular, the map is an isomorphism of Lie algebroids. Since by [3] both Picard

algebroids have characteristic classes in the truncated de Rham cohomology, we get

c1(E) = c1(det(E)) = r · c(L+(Oh))

in H2
F (Y). Furthermore, taking the quotient of L(E) by the subbundle OY ⊂ EndOY (E) we

obtain the Atiyah algebroid L(P(E)) of the associated PGL(r) bundle P(E). By construc-

tion, γ descends to a Lie morphism TY → L(P(E))which lifts the identity on TY . In other

words, we have a flat algebraic connection on P(E).

The above discussion can also be reversed (we are adjusting the argument in

Section 2.3 of [3]): assume that the equation on c1 in H2
F (Y) is satisfied and we are given a
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8 V. Baranovsky and T. Chen

flat connection on the PGL(r)-bundle P(E) associated to E. Then we have a commutative

diagram

OY
��

��

L+(Oh)

��

�� TY

��
OY ⊕ End0(E) �� L(det(E))⊕ L(P(E)) �� TY ⊕ TY

Here the lower row is understood as the sum of Atiyah algebras of det(E) and P(E). The

map into the Atiyah algebra of det(E) is as before (identity on TY and multiplication by

r on OY ). The map into the Atiyah algebra of P(E) is the composition of the projection to

TY and the splitting TY → L(P(E)) given by the flat connection. Observe that the quotient

map TY → TY ⊕ TY is just the diagonal morphism ∂ �→ (∂, ∂).

Now a local section of the Atiyah algebra of E can be interpreted as invariant

vector field on the total space of the principal GL(r)-bundle of E and its direct image

gives vector fields on the total spaces of the C
∗-bundle and the PGL(r)-bundle, corre-

sponding to det(E) and P(E), respectively. Indeed, these total spaces are obtained as

quotients by the SL(r) action and the C
∗ action, respectively. This gives an embedding of

sheaves

L(E) → L(det(E))⊕ L(P(E))

which agrees with brackets and has image equal to the preimage of the diagonal in

TY ⊕TY . This means that the earlier morphism from L+(Oh) lands into L(E), as required.
We can summarize the discussion of this section as the following

Proposition 2.1. Aflat deformation quantization ofEmoduloh2 which admits an exten-

sion to a deformation modulo h3, gives E a structure of a module over the Lie algebroid

L+(Oh), with the class 1
2c1(KY ) + j∗ω1 in H2

F (Y). For an arbitrary vector bundle E on Y

such a structure is equivalent to a choice of an isomorphism L+(Oh) � L(det(E)) as Lie

algebroids on Y which satisfies f �→ rf on functions, and a flat PGL(r) connection on the

PGL(r)-bundle P(E) associated to E. �

3 Harish Chandra Pairs

We recall here some definitions and facts about transitive Harish Chandra torsorswhich

may be found for example, in [7].
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Quantization of Vector Bundles 9

Definiton 3.1. A Harish Chandra pair (G, h) over C is a pair consisting of a connected

(pro)algebraic group G over C, a Lie algebra h over C with a G-action and an embedding

g = Lie(G) ⊂ h such that the adjoint action of g on h is the differential of the given

G-action. �

The reasons why Harish Chandra pairs are relevant to our problem will be explained in

the next sectionwhile herewe introduce themainHarish Chandra pair of this article. Let

n = 1
2 dimC X and consider the Weyl algebra D isomorphic to C[[x1, . . . ,xn,y1, . . . ,yn,h]]

as a vector space but with relations [yi,xi] = δijh, [h,xi] = [h,yj] = [xi,xj] = [yi,yj] = 0.

We view it as a “formal local model” for Oh. The “formal local model” for Eh is the D-

module Mr isomorphic to C[[x1, . . . ,xn,h]]⊕r as a vector space, on which xi,h act by

multiplication while yj acts by h d
dxj

.

Now consider the group Aut(D,Mr) of automorphisms of the pair (D,Mr), each

consisting of a Ch-algebra automorphism � : D → D preserving the maximal ideal

m = 〈xi,yj,h〉, plus a Ch-linear invertible map � : Mr → Mr which satisfies �(am) =
�(a)�(m) for a ∈ D, m ∈ Mr .

Its Lie algebra of derivations of the pair (D,Mr) can be expanded by adding

derivations which may not preserve m. For instance, although the element 1
hyj is not in

D, the commutator [ 1hyj, ·] does define a derivation of D which sends, for example, xj to 1.

The same element acts as d
dxj

on Mr . Therefore, we consider the Lie algebra Der(D,Mr)

which consists of pairs φ : D → D, ψ : Mr → Mr of Ch-linear maps, where φ is a

derivation and ψ satisfies ψ(am) = φ(a)m + aψ(m). This gives a Harish Chandra pair

〈Aut(D,Mr), Der(D,Mr)〉.
Not all automorphisms � and not all derivations φ can be extended to (�,�) or

(φ,ψ), respectively. Indeed, the quotient module Mr = Mr/hMr is annihilated by the

ideal J ⊂ D generated by yj and h (which is the “formal local model” for Ih). Since both�

and ψ would have to preserve hMr and hence to descend to Mr we conclude that � and

φ would have to preserve J . We denote by Aut(D)J the subgroup of Aut(D) formed by

automorphisms which preserve J and similarly by Der(D)J ⊂ Der(D) the subalgebra of

derivations preserving J .

Lemma 3.2. There is an extension of Harish Chandra pairs

1 → 〈GLh(r), glh(r)〉 → 〈Aut(D,Mr), Der(D,Mr)〉 → 〈Aut(D)J , Der(D)J 〉 → 1.

Moreover, Der(D,M1) � 1
hJ where the right hand side is considered with commutator

bracket. �
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10 V. Baranovsky and T. Chen

Proof. For r = 1 this is proved in Corollary 3.1.8 of [6]. Since Mr � M⊕r
1 and we

have the map Aut(D,M1) → Aut(D,Mr) sending (�,�) to (�,�⊕r). Hence any lift for

� ∈ Aud(D)J to Aut(D,M1) also gives a lift of the same � to Aut(D,Mr). Therefore the

right arrow is surjective. Its kernel is the group of automorphisms of Mr as a D-module.

Every such automorphism is uniquely determined by its value on generators, andwe can

choose a set of generators on which yj act by zero. Then their images are independent

on xi, which means that the automorphism if given by an invertible r × r matrix with

entries in Ch.

The proof in the case of Lie algebras is entirely similar. �

Remark: Perhaps it will help the reader to understand the Lie algebra 1
hJ if we introduce

the grading in which degh = 3, deg yj = 2 and deg x = 1 (then the Lie algebra will be an

infinite direct product, not a direct sum, of its homogeneous components).

Degree −1 component is spanned by the elements 1
had(y1), . . . , 1

had(yn), and this

gives the non-integrable part of the Lie algebra. Degree≥ 0 part is the tangent Lie algebra

of Aut(D,M1). Degree 0 component is spanned by 1 and
xiyj
h , which gives the tangent Lie

algebra of the reductive part C
∗ ×GL(n). Degree ≥ 1 part is the pro-nilpotent subalgebra

which contains, in particular, the elements of hCh.

Similar grading exists on Der(D,Mr) if we place gl(r) in degree zero.

The following diagram for Lie algebras and its group analogue will be funda-

mental in our analysis of the main Harish Chandra pair 〈Aut(D,Mr), Der(D,Mr)〉:

0 �� Ch

��

�� 1
hJ

��

�� Der(D)J �� 0

0 �� glh(r) �� Der(D,Mr) �� Der(D)J �� 0

where the middle arrow uses sends α ∈ 1
hJ to the pair (φ,ψ) with φ = [α, ·] and ψ =

α(. . .). In both cases the maps are well defined, that is, a possible denominator cancels

out. Since the images of 1
hJ and glh(r) commute in Der(D,Mr), the following lemma is

immediate,

Lemma 3.3.

Der(D,Mr) �
[
1

h
J ⊕ glh(r)

]
/Ch � 1

h
J ⊕ pglh(r). �
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Quantization of Vector Bundles 11

In the group case we have a diagram

1 �� C
∗
h

��

�� Aut(D,M1)

��

�� Aut(D)J �� 1

1 �� GLh(r) �� Aut(D,Mr) �� Aut(D)J �� 1

but the corresponding splitting fails in the constant terms with respect to h: Aut(D,Mr)

has a subgroup GL(r) which does not split as PGL(r) × C
∗. However, there is a slightly

different splitting on the group level, and the interplay between the two splittings is key

to our later arguments on deformation quantization.

Lemma 3.4. We have a splitting

Aut(D,Mr) � [
Aut(D,M1)/C

∗] × [
GL(r)� exp(h · pglh(r))

]
where exp(h·pglh(r)) is the pro-unipotent kernel of the evaluationmap PGLh(r) → PGL(r),

h �→ 0. The two splittings (of the group and the Lie algebra) agree modulo 〈C∗,C〉:
〈
Aut(D,Mr), Der(D,Mr)/〈C∗,C〉 �

〈
Aut(D,M1)/C

∗,
1

h
J /C

〉
× 〈PGLh(r), pglh(r)

〉
�

Proof. The first statement is follows from the diagram before the lemma and the fact

that the images of GLh(r) and Aut(D,M1) in Aut(D,Mr) commute. To prove the splitting

mod C
∗, observe that the pro-algebraic groups on both sides are semidirect products of

finite dimensional reductive subgroups and infinite dimensional pro-unipotent groups.

The reductive part on the left hand side is GL(r)×GL(n) where GL(r) acts on the gener-

ators of Mr and GL(n) on the variables x1, . . . ,xn ∈ D, with the dual action on y1, . . . ,yn.

The copy of C
∗ acts by scalar automorphisms on Mr only. Thus, the reductive part of the

quotient on the left hand side is PGL(r)× GL(n). The same argument repeated for r = 1

shows that the reductive part on the right is the same. The isomorphism of tangent Lie

algebras on the pro-unipotent parts follows from the previous Lemmas. Since we are

taking quotients by the central copy of C
∗ which acts trivially on the Lie algebras, the

semidirect products match as well. �

Informally we could say that on the group level there is an extra copy of C
∗ ⊂ GL(r)

which on the level of Lie algebras migrates to the other factor C ⊂ 1
hJ � Der(D,M1) but

after taking the quotient by these, the two splittings match.

Downloaded from https://academic.oup.com/imrn/article-abstract/doi/10.1093/imrn/rnx230/4389298
by University of California, Irvine user
on 03 November 2017



12 V. Baranovsky and T. Chen

4 Transitive Harish Chandra Torsors

The concept of a G-torsor over a smooth variety Y can be extended to Harish-Chandra

pairs. We will only need the special case of a transitive Harish Chandra torsor. The

definition below implies that dim(h/g) is finite and equal to dimC Y , as is the case with

the main Harish Chandra pair considered in the previous section.

Definiton 4.1. A transitive Harish-Chandra torsor (or tHC torsor for short) over a Har-

ish Chandra pair (G, h) on a smooth variety Y is a G-torsor P → Y together with a

Lie algebra morphism h → �(P,TP) which induces an isomorphism of vector bundles

h⊗C OP � TP .

This data can be rephrased in terms of the Atiyah algebra L(P) of G-invariant
vector fields on P, viewed as a Lie algebroid on Y

0 → Ad(P) = Pg → L(P) → TX → 0

For a tHC torsor P we have an isomorphism of locally free sheaves on Y :

A : L(P) � Ph

which restricts to identity on Ad(P) = Pg. This isomorphism does not agree with the Lie

bracket but instead Ph has a flat algebraic connection such that

A[x,y] − [Ax,Ay] = ∂xAy − ∂yAx

where x �→ ∂x is the anchor map of L(P). �

Remarks

(1) The sheaf of sections of Ph has a Lie bracket since the action of G preserves

the bracket on h.

(2) In general, if V is a representation of G with the infinitesimal action of g

extended to that of h, for a transitive Harish-Chandra torsor P the associated vector

bundle PV = P ×G V has a flat algebraic connection, see Section 2.3 in in [7].

Let X be a 2n-dimentional symplectic variety over k with a symplectic

form �. Assume that a deformation quantization Oh of OX is given, such that its

non-commutative period is ω(t) = [ω] + tω1 + t2ω2 + · · · ∈ H2
DR(X)⊗ Ch.

Assume that a smooth Lagrangian subvarietyY ⊂ X is given, with a rank r vector

bundle E which we consider as a sheaf of OX -modules via the direct image functor.
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Assume further that x ∈ Y is a point and in some neighborhood of x ∈ X we are given a

deformation quantization Eh of E.

The stalk Oh,x is a non-commutative ring with a maximal ideal mx , which is the

preimage of the maximal ideal nx in the commutative local ring Oh,x/hOh,x � OX ,x . Let

Ôh,x and Êh,x be completions of stalks with respect to this maximal ideal.

Lemma 4.2. There exist isomorphisms η : Ôh,x � D, μ : Êh,x � Mr of topological

Ch-modules which are compatible with filtrations and action of rings on corresponding

modules. Moreover, the first isomorphism may be chosen in such a way that the images

of y1, . . . ,yn in ÔX ,x come from a regular sequence in OX ,x generating the ideal Ix of

functions vanishing on Y . �

Proof. We sketch a proof here briefly. First, we can find an isomorphism

ÔX ,x = C[[x1, . . . ,xn,y1, . . . ,yn]]

such that y1, . . . ,yn are the images of a regular sequence defining Y in the neighborhood

of x. This is due to the formal Weinstein Lagrangian Neighborhood Theorem, the proof

of which, cf. Sections 7, 8 on [10], may be used without changes. The key point here is

that the Moser Trick in Section 7.2 of loc. cit. works in the completion of the local ring,

although not the local ring itself.

Next, both D and Ôh,x can be viewed as deformation quantizations of the algebra

C[[x1, . . . ,xn,y1, . . . ,yn]]with the Poisson bivector equal to h(
∑

i ∂/∂xi∧∂/∂yi)+h2α(h). By

general deformation theory, the bivector α(h) is a Maurer–Cartan solution for the DG Lie

algebra of polyvector fields with the non-trivial differential given by the bracket with

the bivector
∑

i ∂/∂xi ∧ ∂/∂yi. If we identify polyvector fields with differential forms,

this bracket will become the standard de Rham differential. Since for the algebra of

formal power series the the Rham complex is exact and the Maurer–Cartan groupoid is

invariant under quasi-isomophisms, all deformation quantizations are equivalent and

D is isomorphic to the completion of Oh,x . This settles the assertions about the algebras.

As for the module part, since (Eh/hEh)x is free over OY ,x we can find an iso-

morphism of this module with Mr = Mr/hMr � C[[x1, . . . ,xn]]⊕r . Now we repeat the

argument of Lemma 2.3.5 (given there for r = 1) to produce an isomorphism of Êh,x
and Mr . �

Given the data (X ,Y ,Oh) we can consider the proalgebraic scheme PJ parameterizing

the pairs (x, η), where x ∈ Y and η is an isomorphism as above, cf. Section 3.1 of [7] for

a similar case.
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14 V. Baranovsky and T. Chen

Lemma 4.3. PJ has a canonical structure of a transitive 〈Aut(D)J , Der(D)J 〉-torsor. �

Proof. The group Aut(D)J acts on PJ by changing the isomorphism η. Locally in the

Zariski topology on X we can denote by A, B the rings of sections of OX , Oh over an affine

subset, and then the pair (x, η) can be described by two ring homomorphisms x : A → C,

η : limk(B/nk) � D where n ⊂ B is the preimage in B of the ideal Ker(x) ⊂ A = B/hB.

Given a derivation ∂ : D → D, we can consider its composition with D → C = D/m which

descends to a linear function on m/m2, and using the isomorphism η and h-linearity of

∂, to a linear function z : Ker(x)/(Ker(x))2 → C. Thus we can write extensions of x and

η over the ring C[ε]/(ε2) of dual numbers

xε(a) := x(a)+ εz(a); ηε(b) = η(b)+ ε∂(η(b)).

This means that Der(D)J maps to vector fields on the torsor PJ . The defining properties

of tHC torsors (agreement with the group action and the bracket on vector fields) are

immediate from the definitions. �

Proposition 4.4. A choice of a vector bundle E of rank r on Y and its deformation

quantization Eh is equivalent to a choice of a lift of the torsor PJ to a transitive Harish-

Chandra 〈Aut(D,Mr , Der(D,Mr))〉-torsor PMr along the extension of pairs

1 → 〈GLh(r), glh(r)〉 → 〈Aut(D,Mr), Der(D,Mr)〉 → 〈Aut(D)J , Der(D)J 〉 → 1. �

Proof. Given Eh, we can construct the tHC torsor P for which the fiber at x ∈ Y rep-

resents all pairs (η,μ) which identify completions of Oh and Eh at x with the “formal

local models” D and Mr . It has the transitive Harish Chandra structure similarly to

PJ . By construction, the torsor PJ is induced from P by forgetting the isomorphism μ.

Conversely, given a lift P of the tHC torsor PJ , we have a vector bundle PMr associated

via the action of 〈Aut(D,Mr), Der(D,Mr)〉 on Mr . It carries a flat algebraic connection

as any vector bundle associated to a tHC torsor. As in Lemma 3.4 of [7], the Zariski sheaf

Eh is can be recovered as the sheaf of flat sections of PMr . �

5 Lifting the Torsor By Steps

In this section we study the problem of tHC torsor lifting by considering a chain of

surjections

〈G, h〉 → 〈G2, h2〉 → 〈G1, h1〉 → 〈G0, h0〉
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At the two ends we have pairs

〈G, h〉 = 〈Aut(D,Mr), Der(D,Mr)〉, 〈G0, h0〉 = 〈Aut(D)J , Der(D)J 〉

and the intermediate pairs both have product decompositions

〈G2, h2〉 = 〈G, h〉/〈C∗,C〉 � 〈Aut(D,M1)/C
∗,
1

h
J /C〉 × 〈PGLh(r), pglh(r)〉.

〈G1, h1〉 = 〈Aut(D)J , Der(D)J 〉 × 〈PGLh(r), pglh(r)〉.

The following is a more precise version of Theorem 1.

Theorem 5.1. Let P0 = PJ be the transitive Harish-Chandra torsor over the pair 〈G0, h0〉
on Y , induced by the choice of quantization Oh on X and a closed embedding j : Y → X

of a smooth Lagrangian subvariety Y . Assume that Oh has the non-commutative period

[ω] + hω1 + h2ω2 + · · · ∈ H2
DR(X)[[h]]

Then j∗ω1 admits a canonical lift to H2
F (Y) represented by the class of the Picard

algebroid L(Oh).

(1) The groupoid category of lifts of P0 to a tHC torsor P1 over 〈G1, h1〉 is

equivalent to the category of PGLh(r)-bundles on Y with a flat algebraic

connection.

(2) Given a choice of P1, the category of its lifts to a tHC torsor P2 over 〈G2, h2〉 is
equivalent to the category of lifts of the original torsor P0 to a tHC torsor over

〈Aut(D,M1)/C
∗, 1

hJ /C〉. The latter is non-empty if and only if in H2
DR(Y)[[h]]

one has

j∗(h2ω2 + h3ω3 + · · · ) = 0;

(3) Given a choice of P2, the groupoid category of its lifts to a tHC torsor P over

〈G, h〉 is equivalent to the category of rank rmodules E over the Lie algebroid

L+(Oh), equipped with an isomorphism of P(E) and the flat PGL(r)-bundle

induced from P1 via the homomorphism PGLh(r) → PGL(r). Such lifts exist

if and only if the following equality holds in H2
F (Y):

1

r
c1(E) = 1

2
c1(KY )+ c(L(Oh)) = c(L+(Oh)).
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16 V. Baranovsky and T. Chen

4. For a given choice of P1, the groupoid category of its lifts to a tHC torsor P

over 〈G1, h1〉—if non-empty—is equivalent to the groupoid categoryOY [[h]]∗-
torsors with a flat algebraic connection. More precisely, for any fixed choice

of P and a flat OY [[h]]∗-torsor L there is a well-defined tHC torsor L � P, and

the functor L �→ L � P gives an equivalence of categories. �

Proof. The first part is easy due to the splitting of the Harish Chandra pair 〈G1, g1〉. We

are looking for a torsor P1 over G1 and a G1-equivariant form h1-valued form on the total

space of P1, which lifts a similar form on the total space of P0. Due to the splitting of

G1 such P1 would be a fiber product over Y , of the original P0 and a PGLh(r)-torsor Q.

The connection form on P1, due to the G1-equivariant splitting of h1, would also have to

be a sum of the h0-valued connection on P0 and a pglh(r)-valued connection on Q. The

zero curvature condition on P1 (i.e., agreement with the Lie bracket) implies that the

connection on Q is flat.

For the second part, we use the splitting of the Harish Chandra pair 〈G2, h2〉 and
the fact that the flat bundle Q is already defined on the previous step. Therefore, P2

would be a fiber product of Q and a tHC torsor R over 〈Aut(D,M1)/C
∗, 1

hJ /C〉 lifting

P0. Comparing the definitions we see that a tHC structure on P2 of the required type

is equivalent to a similar structure on R lifting that of P0. Existence of R follows by a

combination of Proposition 2.7 in [7] and Lemma 5.2.2 of [6].

For the third part we use the short exact sequence

1 → 〈C∗,C〉 → 〈G, h〉 → 〈G2, h2〉 → 1.

First consider the group side. Due to the splitting of Lemma 3.4 on the level of usual

torsors, we just need to lift a PGLh(r) torsorQ to a torsor Q̃ overGL(r)�exp(h·pglh(r). The

required Harish Chandra structure is an isomorphism of bundles TP � h ⊗C OP which is

G-equivariant and has the zero curvature condition. Since the action of C
∗ ⊂ GL(r) on

h · pglh(r) and h is trivial, we can take C
∗ invariant direct image of both sheaves under

P → P2 = P/C∗ where they have aG2-equivariant structure, and look for aG2-equivariant

isomorphism on the total space of P2 instead.

The tangent bundle of P turns into the Atiyah algebroid of the C
∗-torsor P → P2

and the trivial bundle with fiber h also gets a Lie algebroid structure since on P2 we have

identified TP2 with the trivial bundle with fiber h2 � h/C. We need to construct a G2-

equivariant isomorphism of two bundles with an additional property that corresponds

to agreement of brackets (zero curvature) on P. The G2-equvariant structure means that

the projection to TP2 � h2 ⊗C OP1 has a partial section over the smaller sub-bundle
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g2 ⊗C OP1 . Taking the quotient of both algebroids by the image of this sub-bundle, and

then taking G2-equivariant direct image to Y , we reduce to the question of isomorphism

of two Picard algebroids on Y . Both are classified by a cohomology class in H2
F (Y), hence

the isomorphism exists precisely when the two classes are equal.

To compute the class for the algebroid obtained from h⊗OP observe that instead

of taking the equivariant descent with respect to G2, we can first take the descent by

PGLh(r) and then by Aut(D,M1)/C
∗. The first step will lead to an equivariant Picard

algebroid on R with the fiber corresponding to the middle term of the Lie algebra

extension

0 → C → Der(D,M1) → Der(D,M1)/C → 0

In other words, we find ourselved in the rank 1 situation. By Proposition 4.3.5 in [6] its

equivariant descent to Y gives a Picard algebroid with the class 1
2c1(KY )+ j∗ω1.

For the Atiyah algebroid of P → P2 we will first take the descent with respect to

Aut(D,M1)/C
∗, then with respect to exp(h · pglh(r). This leads to a GL(r)-torsor E on Y

lifting a PGL(r)-torsor P(E). The equivariant descent of the Atiyah algebroid of P → P2

to a Picard algebroid on Y is just the quotient of the Atiyah algebroid of E by the trace

zero part in End(E) ⊂ L(E). Therefore, it has class 1
r c1(E) and the desired equation in

H2
F (Y) is

1
r c1(E) = 1

2c1(KY )+ j∗ω1, concluding the proof of the third part.

For the last part, we interpret the tHC torsor lifting in the language of gerbes,

following Chapter 5 of [2]. Consider the central extension

1 → 〈C∗
h,Ch〉 → 〈G, h〉 → 〈G1, h1〉 → 1

The lifting of a tHC torsor P1 = Q×Y P0 to P, can be split as follows. First, choose a lifting

on the group level. As we have seen before, globally on Y this may not be possible but

local lifts form a gerbe over OY [[h]]∗, see Definition 5.2.4 of [2]. If a (local) lift is chosen,

we can look for an h-valued connection on the lift, and all possible choices of such

a connection form a connective structure on the gerbe in the sense of Definition 5.3.1

of loc. cit.. Moreover, whenever we can choose a connection, this leads to the curvature

d�+ 1
2�∧�where� is the h-valued form on the total space of the torsor which described

the connection. This gives a curving of the connective structure, see Definition 5.3.7 of

loc. cit. As in Theorem 5.3.17 of loc. cit. this leads to a gerbe over the Ch-version of

Deligne complex

Delh(Y) := OY [[h]]∗ → �1
Y [[h]] → �2

Y [[h]] → . . .
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18 V. Baranovsky and T. Chen

where the first arrowsends f to df
f . Sincewewant to trivialize the gerbe over this complex

(i.e., the lifting torsormust exist and itmust admit a connectionand the connectionmust

have zero curvature), the category of such trivializations—if nonempty is equivalent to

the category of torsor over the same complex. By aCh version of Theorem2.2.11 in loc. cit.

the latter is equivalent to the category ofOY [[h]]∗-torsor with a flat algebraic connection.

In particular the set of equivalence classes of deformation quantization with a fixed

projectivization Q is in bijective correspondence with the set of isomorphism classes of

OY [[h]]∗-torsor with a flat algebraic connection.

A more explicit, if a bit less conceptual version of this step is as follows. We look

at the short exact sequence

�≥1(Y)[[h]] → Delh(Y) → OY [[h]]∗

and the piece of the associated long exact sequence in cohomology:

. . . → H1(Y ,OY [[h]]∗) → H2
F (Y)[[h]] → H2(Y ,Delh(Y)) → H2(Y ,OY [[h]]∗) → . . . ...

If a 〈G1, h1〉 torsor and its tHC structure can be trivialized on an covering {Ui} of X then

we can first look at G-valued liftings ψij : Ui ∩ Uj → G of the cocycle defining P2. Then

we can look at those h-valued connections ∇i on the trivial G-bundles on each Ui which

lift the given h1-valued connection on P1.

The functions ψij lead to an expression aijk = ψijψjkψki on Ui ∩ Uj ∩ Uk which

takes values in OY [[h]]∗ since its projection to G2 is trivial. Moreover, the difference of

∇i − ∇j on Ui ∩Uj is given by a Ch-valued differential 1-form bij and a quick comparison

of definitions shows that on triple intersections (bij+bjk+bki) = daijk/aijk. On eachUi the

curvature of ∇i is given by a 2-form ci which takes values in the Lie subalgebra Ch ⊂ h

since the projection of the connection to h2 satisfies the zero curvature condition. On the

double intersections we have (ci −cj) = dbij, the usual comparison of curvatures for two

different connections.

The two identities relating bij with aijk and ci with bij mean that the three groups

of sections define a single cohomology class in H2(Y ,Delh(Y)).

The projection of this class to H2(Y ,OY [[h]]∗) is represented by the cocycle aijk.

In the case when the class is trivial we can readjust the choice of ψij by the cochain

resolving aijk and ensure aijk ≡ 1. This means that ψij do define a lift of P1 to a G-torsor

P. Now the obstruction too is lifted from H2(Y ,Delh(Y)) to H2
F (Y)[[h]]. The fact that such

lift is only well defined up to an element in the image of H1(Y ,OY [[h]]∗) reflects the fact

that P is only well defined only up to a twist by a torsor over OY [[h]]∗. Since P → P1 is
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a G1-equivariant torsor over C
∗
h on P1 we can descend its Lie algebroid to Y and obtain

a class of this algebroid in H2
F (Y)[[h]] which must vanish if we want to lift the tHC

structure to P. This finishes the proof. �

6 Remarks and Open Questions

• WhenY is affine, a straightforward argument following Section 3 and Appen-

dix A from [17] or, alternatively, an imitation of the arguments in Section 5

of [9], shows that we can assume that Eh is isomorphic to E[[h]] as a Zariski

sheaf ofCh-modules. This is established inductively, considering Eh/hkEh and
observing that obstructions to trivializing Eh/hk+1Eh, given a trivialization of

Eh/hkEh, live in an Ext group which vanishes since Y is affine and E is locally

free on Y .

• Our results make sense in the category of complex manifolds where de Rham

cohomology groups correspond to the holomorphic de Rham complex. In fact,

the arguments of the paper carry over to the case of etale topology, and should

hold in the case of smooth Deligne–Mumford stacks as well.

For the case of real manifolds more work is needed to adapt our arguments

but one expects that the output will be similar in spirit to the arguments

in [15].

• Perhaps the most celebrated example of a vector bundle with a flat pro-

jective connection is the bundle of conformal blocks on the moduli space

M of (marked) curves with the Hitchin connection. It would be interesting

to see whether M may be realized as a Lagrangian subvariety (actually,

sub-orbifold) in a larger sympletic variety, so that the bundle of confor-

mal blocks admits a deformation quantization. Maybe the approach to M

via representations of π1(C) in PSL(2,R) (which are embedded into PSL(2,C)

representations) could give something here.

• In theory, ourmethods shouldwork for vector bundles on smooth coisotropic

subvarieties. In this case the conormal bundle N∗ embeds as a null-foliation

sub-bundle of the tangent bundle: N∗ � TF ↪→ TY . Consequently, the full

de Rham complex will be replaced by the normal de Rham complex built

from exterior powers of T∗
F � N . For second order deformations this has been

studied in [16].

• It has been noted in [16] that for a given bundle E on Y its deformation

quantization problem is described by a sheaf of curved dg Lie algebras.
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If we assume that all ωi restrict to zero on Y , we have an interesting sit-

uation: at the first step of the deformation there is an obstruction (coming

from the curvature element) but if it is resolved, there are no further obstruc-

tions. Oneway to understand it is to view Eh as a deformation of anOh module

E over the power series ring C[[h]]. Not every deformation is a deformation

quantization though, and one way to formulate the condition is to require

that the first order deformation is given by an element of Ext1Oh
(E,E) which

projects to identity under the map

Ext1Oh
(E,E) → HomOX

(
Tor

Oh
1 (OX ,E),E

)
= HomOX (E,E)

provided by the Change of Rings Spectral Sequence for the homomorphism

Oh → OX . This implies that the identity IdE must be closed with respect

to this spectral sequence differential HomOX (E,E) → Ext2OX
(E,E). Once this

obstruction vanishes, any higher order extension of the first order deforma-

tion as an Oh-module, is automatically a deformation quantization of E and

the first order adjustment to the differential of the deformation complex in

[16] removes the curvature.

• Perhaps the category of vector bundles with a structure of a L+(Oh)-modules

deserves a closer attention. The condition of having a flat structure on P(E)

and an equation in H2
F (Y)

1

r
c1(E) = 1

2
c1(KY )+ j∗ω1

is stable under direct sums, and taking the tensor product of E with a flat

vector bundle F . For any pair of bundles E1,E2 with these conditions the

bundle HomOY (E1,E2) is flat. Indeed, for a local section ϕ of these bundles

we can attempt to take its derivative along a vector field ∂ by lifting it to a

section of L+(Oh) and then using the action of L+(Oh) of E1 and E2. The lift of

∂ is only well-defined up to a section of OY ⊂ L+(Oh) but ϕ is O-linear so its

derivative will not depend on the choice of this lift.

In particular, if we can find a line bundle Lwhich satisfies the above equation

with r = 1, then we can write any L+(Oh)-module in the form E = F⊗Lwhere

F has flat algebraic connection. Of course, when 1
2c1(KY ) + j∗ω1 = 0 we can

take L = OY . Another instance is when j∗ω1 = 0, in which case the category

admits an involution E �→ E∗ ⊗KY . When, in addition, we can find L such that

KY � L⊗2 this involution corresponds to dualization of the local system F .
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In would be interesting to compare the de Rham cohomology of the local

system HomOY (E1,E2) and the groups ExtOh
(E1,h, E2,h) for deformation quan-

tization of E1, E2, respectively.

• The original motivation of [5] was to relate deformation quantization to the

Kapustin-Rozansky 2-category of the original algebraic symplectic variety

(X ,ω), cf. [14]. At least when the class ω1 ∈ H2
DR(X) vanishes, it is natural to

expect that an L+(Oh)-module E on a Lagrangian Y should define an object

(Y ,E) in this category.We further expect that for the same Y and different E1,

E2 the cyclic homology of the 1-category Hom((Y ,E1), (Y ,E2)) has something

to do with the de Rham cohomology of the local system HomOY (E1,E2).

This also suggests a connection between L+(Oh)-modules and generalized

complex branes of Gualtieri, [12]. Indeed, those are defined as modules over

a Lie algebroid which appears after restriction to a subvariety. On the other

hand, counting dimensions we see that L(Oh) cannot come from an exact

Courant algebroid on X , but perhaps one should work with some algebroid

on X × Spec(C[[h]]). By an earlier remark in this section one expects a more

general construction for vector bundles on smooth coisotropic subvarieties

when connections and similar structures are only defined along the null-

foliation.
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