
Delay Window Blind Oversampling Clock and Data
Recovery Algorithm with Wide Tracking Range

Travis Bartley∗, Shuji Tanaka∗, Yutaka Nonomura†, Takahiro Nakayama‡ and Masanori Muroyama∗
∗Microsystem Integration Center, Tohoku University, Sendai, Miyagi, Japan

†Power Electronics Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
‡Partner Robot Division, Toyota Motor Corp., Toyota, Aichi, Japan

Abstract—A new blind oversampling clock and data recovery
(BO–CDR) algorithm is proposed. It has high tolerance to low–
frequency jitter (14.8 unit intervals at 10 kHz, measured at
640 Mbps) and is suitable for systems where the receiver clock
has high drift with respect to the transmission. The algorithm is
capable of recovering data over a wide tracking range or when
the precise oversampling rate (β) is not known a priori, for
any real–valued oversampling rate, β ≥ 3, making this BO–
CDR algorithm the first to not require integer–valued β. To
demonstrate the utility of the algorithm, two implementations
are designed and evaluated. The first is used in a low–power,
low–data rate sensor node IC with a low–performance single
phase clock source. The second is a high–speed receiver with a
multiple phase clock source implemented on FPGA. The CDR
core consists of just 47 logic cells and 19 registers and has an
estimated power consumption of 0.70 mW at 640 Mbps. The
properties of this CDR algorithm make it appropriate for a wide
range of applications in serial communication.

I. INTRODUCTION

Clock and data recovery (CDR) is an essential operation in
serial communication. Of the various types of CDR architec-
tures, blind oversampling based CDRs offer some advantages.
First, data recovery can be provided with low latency because
data sampling can lock to the serial signal almost immedi-
ately [1]. Oversampling CDRs can also achieve data rates of
multiple Gbps, and are inherently stable. They are applicable
to both burst–mode and continuous–mode data transmission,
and can be implemented using digital cells alone, making BO–
CDR designs portable and easy to implement.

Existing blind oversampling CDR (BO–CDR) schemes be-
gin with the assumption that the sampling rate is an exact
multiple of the transmission data rate. Two well–known BO–
CDR algorithms are direct phase picking (DPP) and averaged
phase picking (APP) [2]. A sampling rate of 3R or 5R is
common, where R is the bit rate. The decision window is
always β input samples wide, where β is the oversampling
rate (integer-valued in this case). This means that 1 bit of data
is recovered every β input samples, without exception. There
are a few drawbacks of recovering data in this manner.

If there is a slight mismatch between the transmission rate
and the sampling rate, there will be a proportional rate of bit
slips. This requirement for an accurate frequency match means
that these CDR schemes are sensitive to drift or low–frequency
jitter in either the clock or data signals. Also, the minimum
achievable bit error rate (BER) is limited by the accuracy of
both transmitter and receiver clocks. This sensitivity to timing

variations implies that these algorithms have narrow tracking
ranges. They can perform well in basic laboratory tests with
frequency-matched reference clock and data sources, but will
have high BER in real-world environments where the reference
clock and input data drift with respect to each other. This is
a critical drawback in almost all BO-CDR algorithms that is
rarely mentioned in the literature. There has been a BO–CDR
developed to overcome this problem [3]. However, it requires
β = 5. This means that about 67% more samples must be
processed for the same amount of recovered data as compared
to β = 3, with a proportional impact to resource consumption
and the maximum data rate. Also, the maximum packet size
is inversely proportional to the frequency offset between the
transmitter and receiver clocks.

The second drawback to the existing BO–CDR systems
is that there is no flexibility in the oversampling rate. β is
determined at design–time and cannot be reconfigured without
changing the clock speed. The third limitation is that these
systems only function correctly when β is an integer value.
On the other hand, an analog phase–locked loop (PLL) CDR
can be designed to function correctly for drifting data, or for a
wide tracking range. These are significant drawbacks for BO-
CDR that are not present in PLL CDR circuits. However, it is
noteworthy that their limitations are not due to some inherent
property of digital systems, but are due to the algorithms
themselves. The algorithm proposed in this article avoids these
drawbacks by using variable–length delay windows to track
the bit boundary of the input data. Section II describes the
delay window CDR algorithm at the abstract level. Section
III provides implementation-specific information. Section IV
describes the experimental setup and Section V provides the
experimental results. The paper is concluded in Section VI.

II. ALGORITHM

Existing BO–CDRs track the bit boundary based on the
timing of the data transitions, but they are limited to how far
they can track with respect to the reference clock due to the
fact that the decision window has fixed width. The proposed
delay window (DW) CDR algorithm also tracks the incoming
data based on edges. However, the width of the DW can be
changed to adapt to the input stream. Whenever an edge is
detected or a DW expires, a new DW is started. The duration
of the DW is calculated based on a function which will be
explained below.



If the DW ends before an edge is detected, this means that
the data did not transition in the expected time frame. As a
result, 1 bit of data is recovered, and a new DW is set. When
an edge does occur, this event immediately triggers the circuit
to store 1 bit of data and start a new DW, forcing the current
DW to expire. By tracking the data in this manner, the DW
will remain phase–locked to the incoming data stream, even
in the presence of significant data or clock drift. Rather than
having a decision window of fixed width, as with APP and
DPP, a DW of variable width offers a significant advantage: it
is not locked to the reference clock and can drift early or late
to track with the input data.

A. Single Phase Sampling Clock

Based on this idea, the architecture for the DW CDR was
developed (Fig. 1). M is defined as the number of input
samples processed per core clock cycle. In the case of a single
phase sampling clock (M = 1), the signal widths of d, e,
and phasesel (defined below) are all 1 bit each. The input
data, d∗, must be synchronized to the core clock (clkrx) by
a synchronizer (in the single phase case) or a sampler (in the
multiple phase case) [4]. d∗ is routed to the inputs of a register
and XOR gate for edge detection. The timer signal is used to
determine when a DW expires, and is decremented once per
clock cycle. The logic that drives the timer∗ signal takes the
current timer value, the number of DWs since the last edge,
p∗ (where p∗ = 0, 1, 2, ...), and the edge signal, e, as input
(Fig. 2). If an edge occurs, p∗ is set to “0” and the timer
register is loaded with a value corresponding to the duration
of the next DW. If either timer reaches “0” or an edge occurs,
the phasesel signal indicates to the data extraction circuit that
a new bit, d0, is ready to be stored. By starting a new DW
when an edge is detected, the timing information in the input
is used to correct the DW phase–lock. A suitable reset value
for timer, p and phasesel is 0. Even with no reset, these
variables will enter known states after an edge is detected.

B. Multiple Phase Sampling Clock

To increase the bit rate of a digital CDR circuit, the first
option might be to increase the clock frequency. However,
there is a limit to how much the clock frequency can be
increased. Another way to increase the bit rate is for the CDR
to process more samples per clock cycle. This is a well–known
principle of BO–CDR, and a generic architecture including
a sampler, phase selector, data extractor and output fifo has
previously been established (Fig. 3). Based on this, a multiple
phase DW CDR was also implemented. The sampler used was
a simple shift register–based circuit with M2 D flip–flops [5].
The multiple phase architecture resembles that of the single
phase, except that the timer reload and decision logic must
process multiple input bits each clock cycle.

C. Delay Window Duration Function

The function used to determine the DW durations is crit-
ically important to the performance of this scheme. If the
function is too inaccurate, a DW may expire too early, causing

...

D Q

Data reg and 
edge detection

D Q

D Q

... ...
D Q

...

...

d0

d1

dM - 1

phasesel*

D Q
timer 

e0

e1

eM - 1

d0
*

Reload and 
decision logicD Q

p* p

d1
*

dM - 1
*

timer* 

phasesel

Fig. 1. Architecture for delay window CDR core, generalized for both single
phase and multiple phase operation. All registers shown are in the core clock
domain (clkrx). The most significant bit in d is the newest sampled data, and
the least significant bit is the oldest.

for i =M − 1 to 0 do
if ei == 1 then
p∗ ← 0
phasesel∗i ← 1
timer∗ ← Tp∗ − 1

else
if timer == 0 then
p∗ ← p+ 1
phasesel∗i ← 1
timer∗ ← Tp∗ − 1

else
p∗ ← p
phasesel∗i ← 0
timer∗ ← timer − 1

end if
end if

end for

Fig. 2. Register reload and decision logic pseudocode.

R
x 

da
ta

O
ut

pu
t 

F
IF

O

S
am

pl
er d*

Sampling clocks

C
D

R
 c

or
e

d

D
at

a 
ex

tr
ac

to
r

Recovered 
data

phasesel

Write en

Fig. 3. Architecture for overall BO–CDR circuit.

1 bit to be repeated, or expire too late, causing 1 bit to be
deleted. Theoretically, the DW duration could be calculated
based on whatever factors the designer determined to be
important. The tradeoff is that the complexity of the timer
reload and decision logic impacts the maximum frequency
of the circuit, as well as the size and power consumption.



↑ ↑ ↑ ↑ ↑ ↑ ↑
T1 T0 T1 T2 T0 T1 T0

clkrx

d∗0

d0

e0

p 0 1 0 1 2 0 1 0

timer 1 0 2 1 3 2 1 0 2 1 0 2 1 3 2 1 0 2 1 3 2 1

phasesel 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Fig. 4. Example timing diagram for single phase DW CDR with β = 3.
Vertical lines show where new DWs begin.

For the implementations presented in this paper, a decision
function was developed which has excellent jitter tolerance,
while also having a low impact to circuit complexity. In this
case, the DW width is determined by two factors: β and p∗.
The initial duration (in input samples) of a DW is defined
as Tp∗ according to the equation below, with an example in
Fig. 4.

Tp∗ = floor(1.5β) for p∗ = 0

Tp∗ = floor((p∗ + 1.5)β)− floor((p∗ + 0.5)β) for p∗ > 0

This equation was derived by determining the times when
subsequent edges are expected to occur after an initial edge
(1β, 2β, ...). The midpoints between these times were deter-
mined, and this equation sets the DW to expire near these
midpoints (1.5β, 2.5β, ...). Any DW that begins after an edge
must be approximately 1.5β samples long in order to end at the
next midpoint. Any DW that does not begin after an edge must
be approximately β samples long to end at the next midpoint
since it starts near a midpoint. However, if Tp∗ = floor(1.5β)
for p∗ = 0 and Tp∗ = floor(β) for p∗ > 0 were used for
delay window duration function, the algorithm would quickly
accumulate timing errors for non–integer values of β. The
problem is that β is a real number, but the width of the DW can
only be an integer number of samples. This causes a rounding
error to be introduced into the DW timing. The more the error
accumulates, the more likely a bit slip will occur. For this
reason, the calculation of Tp∗ must take into account the timing
error caused by rounding from previous Tp∗ calculations.

The equation given for Tp∗ accounts for this. For example,
suppose β = 3.5, and an edge occurs, followed by many
samples with no input transition. The Tp∗ sequence will then
be 5, 3, 4, 3, 4, ..., with 3 and 4 continuing to repeat. Because
the average of 3 and 4 is 3.5, this sequence will not result
in rounding error accumulation over time. The function has
been derived such that that timing errors are minimized for
all real values of β. It is also straight–forward to implement
this function in hardware. The floor function is performed
by truncating the fractional bits of the operation. Also, it

is possible to use only integer operations by shifting the
binary values of the variables left before the calculation, and
shifting the binary result right by a corresponding amount. For
example, if β is stored as a binary number with 5 integer bits
and 3 fractional bits, this is identical to storing an 8 bit number
with value 8β. The 8β value is then operated on using integer
operations, and the result is divided by 8 by truncating the
three least significant bits.

D. Oversampling Rate Estimation
If the exact frequency of the receiver clock or transmission

rate is not known, the oversampling rate must be estimated for
CDR. For this reason, a training sequence or preamble can be
used to determine the oversampling rate. Once the beginning
of the preamble is detected, the receiver begins counting clock
cycles. By the end of the preamble, the receiver has counted
the duration of the preamble in receiver clock cycles. If the
length of the preamble in unit intervals (UI) is also known,
β can be calculated as the number of receiver clock cycles
divided by the length of the preamble in unit intervals. In this
way, an estimation of β can be made during the preamble,
which allows successful data recovery of the remainder of the
packet.

III. IMPLEMENTATION

The DW CDR was implemented for two different appli-
cations to demonstrate the broad flexibility of the algorithm.
The first implementation was for a receiver in a low–power
sensor node system [6]. The system consists of several sensor
nodes on a shared bus. Each sensor node circuit has its own
on–chip RC-based clock generator. The sensor node clocks
are therefore sensitive to process, voltage and temperature
variations as well as noise. Not only is the clock rate expected
to not precisely match the designed frequency, but it is
also expected to change depending on operating conditions.
Likewise, communication between circuits is expected to have
drift between the transmitter and receiver. Meanwhile, the data
rate requirement of the system is relaxed at 50 Mbps. Because
the data rate is relatively low, a single phase receiver was used
to reduce circuit size and complexity. Transmission data is
sent in a formatted packet, which has a 9 bit preamble for β
estimation, as described above. The packet is encoded using
4B5B and NRZI to ensure that the transmission is run-length
limited, which increases the reliability of communications.

The designed tracking range was 3 ≤ β ≤ 9, and simulation
testing demonstrated correct functionality over this range. The
sensor node IC was fabricated in the TSMC 180 nm CMOS
Mixed Signal Process and assembled together with a sensor
node bus ribbon and a relay node FPGA. The communication
systems including the CDR core functioned as designed for
both the relay node and sensor nodes. Because of the highly
integrated design of the sensor node IC, it was not possible to
perform in–depth evaluation of the performance of the CDR.

IV. EXPERIMENT

For a more critical analysis of the algorithm’s performance,
a second implementation was developed on a Cyclone IV



FPGA EP4CGX150CF23C7N on the HuMANDATA ACM–
024C and ZKB–105C boards. The architecture was designed
as in the “Multiple Phase Delay Window CDR” section above,
and comparable phase selection circuits for APP (shift register
depth: W = 12) and DPP were used for direct comparison.
The bit rate was 640 Mbps. Although the internal circuit was
able to reach a higher data rate, the speed was ultimately lim-
ited by the general purpose low–voltage differential signaling
I/O of the FPGA.

Each of the three algorithms were designed with β = 3
and M = 12. The FPGA board was then connected by SMA
cables to the Agilent N4903B J bit error rate tester (BERT)
for jitter tolerance testing. The N4903B has calibrated and
integrated jitter injection which was used to add sinusoidal
jitter (SJ) and periodic jitter (PJ) with sinusoidal characteristic
to the test data. The use of SJ and PJ depends on the jitter
frequency, and the BERT switches automatically between the
two sources. The SJ and PJ were both injected into the data
signal which was sent to the design under test (DUT). The
reference clock sent to the DUT was not distorted by any
jitter source, and the data signal was injected with SJ and PJ.

V. RESULTS

The results of the jitter tolerance tests of DPP, APP and DW
CDR are plotted together (Fig. 5). The maximum magnitude
of jitter that the BERT can provide is also shown. The target
BER was 10−9 with 95% confidence level, and the data
pattern used was a 231 − 1 pseudorandom binary sequence.
Both DPP and APP jitter tolerance remains well below 1
UI throughout the testing range. DW CDR, on the other
hand, is able to track the input when it is injected with low
frequency jitter, with a maximum jitter tolerance of 14.832 UI.
Overall, DPP has the worst jitter tolerance and DW CDR has
the best. In terms of size and power, DW CDR and DPP
have approximately the same impact (table I). APP, with its
much higher computational complexity and size, consumes the
most power. FPGA and CDR core power estimations were
calculated using the Quartus II PowerPlay Tool.

VI. CONCLUSION

The DW CDR algorithm was developed and evaluated.
Through analysis, it can be seen that it has several advantages
over existing BO–CDRs. First, it has a flexible oversampling
range. It can be designed for any real oversampling rate at or
above 3. Also, the tracking range can be made arbitrarily wide
since the maximum oversampling rate can be arbitrarily high.
This means a single circuit can be designed to operate over
a range of bit rates without the need for redesign or change
in reference clock frequency. It is also highly tolerant to low–
frequency SJ and PJ or drift. These are significant advantages
over DPP, APP and other BO–CDR algorithms. DW CDR
also retains the benefits of other BO–CDR algorithms due to
its all–digital nature. It can be easily transferred between pro-
cess technologies and designs, and is low–sized and energy–
efficient. The greatest advantage of the delay window CDR
algorithm is its flexibility. As demonstrated, it can be designed

104 105 106 107 108

10−1

100

101

102

Frequency (Hz)

To
ta

l
Ji

tte
r

M
ag

ni
tu

de
(U

I)

DPP
APP

DW CDR
Max

Fig. 5. Jitter tolerance for sinusoidal and periodic jitter. The proposed
algorithm (DW CDR) shows significant improvement in low-frequency jitter
tolerance over compared algorithms.

TABLE I
COMPARISON OF CDR ALGORITHMS

Algorithm DPP APP DW CDR

Logic cell combinationals 22 386 47

Logic cell registers 20 438 19

Board–level current at 3.3 V (mA) 293 297 293

Est. FPGA power (mW) 169.4 173.80 166.69

Est. CDR core power (mW) 0.57 6.75 0.70

for low–power systems with high timing variability, as well
as high–speed systems with more accurate clocks. Trade–offs
between oversampling rate range, BER, data rate, size, power
and complexity requirements can be addressed by selecting
appropriate design parameters.

ACKNOWLEDGMENT

This study was performed in the R&D Center of Excel-
lence for Integrated Microsystems, Tohoku University under
the program “Formation of Innovation Center for Fusion of
Advanced Technologies” supported by Special Coordination
Funds for Promoting Science and Technology. The authors
would also like to thank VDEC at the University of Tokyo for
supporting the evaluation.

REFERENCES

[1] M.–T. Hsieh, and G. Sobelman “Architectures for Multi–Gigabit Wire–
Linked Clock and Data Recovery,” Circuits and Systems Magazine, IEEE,
vol. 8, no. 4 , pp. 45–57, Dec, 2008.

[2] J. Kim, and D.–K. Jeong “Multi–Gigabit–Rate Clock and Data Recov-
ery Based on Blind Oversampling,” Communications Magazine, IEEE,
vol. 41, no. 12 , pp. 68–74, Dec, 2003.

[3] S.–H. Park et al., “A Single–Data–Bit Blind Oversampling Data-Recovery
Circuit With an Add–Drop FIFO for USB2.0 High–Speed Interface,”
Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 55,
no. 2, pp. 156–160, Feb. 2008.

[4] C. Cummings, “Clock Domain Crossing (CDC) Design & Verifica-
tion Techniques Using SystemVerilog,” Synopsys Users Group, (Boston,
USA), Sep. 2008.

[5] N. Sawyer “Data Recovery,” Xilinx Application Note, no. 224, Sep. 2000.
[6] M. Muroyama et al., “Tactile Sensor Network System with CMOS–

MEMS Integration for Social Robot Applications,” Smart Systems Inte-
gration International Conference and Exhibition, (Vienna, Austria), Mar.
2014.


