For the latest PubMed Updates click on the link.

The latest from the UC Davis team!

High endemism of mosquitoes on São Tomé and Príncipe Islands: evaluating the general dynamic model in a worldwide island comparison

Claire Loiseau  Martim Melo  Yoosook Lee  Hugo Pereira  Mark J. Hanemaaijer  Gregory C. Lanzaro  Anthony J. Cornel (UC Davis)

First published: 21 June 2018

  1. The archipelago of São Tomé and Príncipe is a major centre of endemism for vertebrates but, to date, arthropods remain poorly studied, with the exception of mosquitoes due to their medical and economic relevance. Previous studies, over 20 years old, recorded 26 species of mosquitoes for São Tomé and 14 for Príncipe, of which six and two were endemic to each island respectively.
  2. We collected mosquito larvae and adults on both islands and found three species as a first record, putting the number of mosquito species collected at least once on São Tomé at 29 and 15 for Príncipe. We compared the mosquito richness on São Tomé and Príncipe islands to 71 other oceanic islands represented within 20 archipelagoes worldwide.
  3. We used the general dynamic model of oceanic island biogeography and the associated ATT2 (for Area+Time+Time2) model to explain two different metrics: (i) the richness of the single‐island endemics and (ii) the richness of archipelago endemics. We also included other island characteristics in our model, such as isolation and latitude.
  4. Our data compilation and comparative analyses revealed an overall low richness of endemic mosquitoes on islands, with the highest number of single‐island endemics found on São Tomé Island.
  5. As predicted, we found a positive relationship between our two richness metrics and the general dynamic model ATT2, although the model with the area (A) alone also explained endemic richness. Isolation was also predictor of mosquito diversification.
Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division 

Mark J. Hanemaaijer

1, Parker D. Houston1, Travis C. Collier1Laura C. Norris1Abdrahamane Fofana2Gregory C. Lanzaro1, Anthony J. Cornel3Yoosook Lee1 (UC Davis)


Here we report the complete mitochondrial sequences of 70 individual field collected mosquito specimens from throughout Sub-Saharan Africa. We generated this dataset to identify species specific markers for the following Anopheles species and chromosomal forms: An. arabiensis, An. coluzzii (The Forest and Mopti chromosomal forms) and An. gambiae (The Bamako and Savannah chromosomal forms).  The raw Illumina sequencing reads were mapped to the NC_002084 reference mitogenome sequence. A total of 783 single nucleotide polymorphisms (SNPs) were detected on the mitochondrial genome, of which 460 are singletons (58.7%). None of these SNPs are suitable as molecular markers to distinguish among An. arabiensis, An. coluzzii and An. gambiae or any of the chromosomal forms. The lack of species or chromosomal form specific markers is also reflected in the constructed phylogenetic tree, which shows no clear division among the operational taxonomic units considered here.

PubMed updates:


James lab Gene Expression database for Anopheles gambiae

 et al


For the latest PubMed Updates click on the link.

The redox-sensing gene Nrf2 affects intestinal homeostasis, insecticide resistance and Zika virus susceptibility in the mosquito Aedes aegypti.

Bottino-Rojas V, Talyuli OAC, Carrara L, Martins AJ, James AA, Oliveira PL, Paiva-Silva GO.  J Biol Chem. 2018 Apr 23. pii: jbc.RA117.001589. doi: 10.1074/jbc.RA117.001589. PMID: 29685890

Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination.

Li Z, You L, Yan D, James AA, Huang Y, Tan A. PLoS Genet. 2018 Feb 23;14(2):e1007245. doi: 10.1371/journal.pgen.1007245. eCollection 2018 Feb. PMID: 29474354

Population modification of Anopheline species to control malaria transmission.

Carballar-Lejarazú R, James AA. Pathog Glob Health. 2017 Dec;111(8):424-435. doi: 10.1080/20477724.2018.1427192. Epub 2018 Feb 1. PMID: 29385893

Adelman Z, Akbari O, Bauer J, Bier E, Bloss C, Carter SR, Callender C, Denis AC, Cowhey P, Dass B, Delborne J, Devereaux M, Ellsworth P, Friedman RM, Gantz V, Gibson C, Hay BA, Hoddle M, James AA, James S, Jorgenson L, Kalichman M, Marshall J, McGinnis W, Newman J, Pearson A, Quemada H, Rudenko L, Shelton A, Vinetz JM, Weisman J, Wong B, Wozniak C. Nat Biotechnol. 2017 Aug 8;35(8):716-718. doi: 10.1038/nbt.3926. No abstract available.PMID: 28787415

nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi.

Macias VM, Jimenez AJ, Burini-Kojin B, Pledger D, Jasinskiene N, Phong CH, Chu K, Fazekas A, Martin K, Marinotti O, James AA.

Insect Biochem Mol Biol. 2017 Aug;87:81-89. doi: 10.1016/j.ibmb.2017.06.014. Epub 2017 Jul 1. PMID:28676355

Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi.

González-López L, Carballar-Lejarazú R, Arrevillaga Boni G, Cortés-Martínez L, Cázares-Raga FE, Trujillo-Ocampo A, Rodríguez MH, James AA, Hernández-Hernández FC. PLoS One. 2017 Jun 12;12(6):e0176533. doi: 10.1371/journal.pone.0176533. eCollection 2017. PMID:  28604779

Xu J, Chen S, Zeng B, James AA, Tan A, Huang Y.

PLoSGenet.2017Jan19;13(1):e1006576.doi:10.1371/journal.pgen.1006576. eCollection 2017 Jan. PMID:  28103247

Xu J, Zhan S, Chen S, Zeng B, Li Z, James AA, Tan A, Huang Y.

Insect Biochem Mol Biol. 2017 Jan;80:42-51. doi: 10.1016/j.ibmb.2016.11.005. Epub 2016 Nov 17.


rAed a 4: A New 67-kDa Aedes aegypti Mosquito Salivary Allergen for the Diagnosis of Mosquito Allergy.

Peng Z, Caihe L, Beckett AN, Guan Q, James AA, Simons FE.

Int Arch Allergy Immunol. 2016;170(3):206-10. doi: 10.1159/000448587. Epub 2016 Sep 8.

PMID: 27603527

Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus.

Liu H, Liu T, Xie L, Wang X, Deng Y, Chen CH, James AA, Chen XG.

Parasit Vectors. 2016 Jun 27;9(1):363. doi: 10.1186/s13071-016-1644-9.


CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella).

Huang Y, Chen Y, Zeng B, Wang Y, James AA, Gurr GM, Yang G, Lin X, Huang Y, You M.

Insect Biochem Mol Biol. 2016 Aug;75:98-106. doi: 10.1016/j.ibmb.2016.06.004. Epub 2016 Jun 16.

Kojin BB, Costa-da-Silva AL, Maciel C, Henriques DA, Carvalho DO, Martin K, Marinotti O, James AA, Bonaldo MC, Capurro ML.

Malar J. 2016 Mar 10;15:153. doi: 10.1186/s12936-016-1207-8.

PMID: 26964736

Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA.

Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):E6736-43. doi: 10.1073/pnas.1521077112. Epub 2015 Nov 23.

PMID: 26598698

Chen XG, Jiang X, Gu J, Xu M, Wu Y, Deng Y, Zhang C, Bonizzoni M, Dermauw W, Vontas J, Armbruster P, Huang X, Yang Y, Zhang H, He W, Peng H, Liu Y, Wu K, Chen J, Lirakis M, Topalis P, Van Leeuwen T, Hall AB, Jiang X, Thorpe C, Mueller RL, Sun C, Waterhouse RM, Yan G, Tu ZJ, Fang X, James AA.

Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E5907-15. doi: 10.1073/pnas.1516410112. Epub 2015 Oct 19. Erratum in: Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):E489.

PMID: 26483478

BIOSAFETY. Safeguarding gene drive experiments in the laboratory.

Akbari OS, Bellen HJ, Bier E, Bullock SL, Burt A, Church GM, Cook KR, Duchek P, Edwards OR, Esvelt KM, Gantz VM, Golic KG, Gratz SJ, Harrison MM, Hayes KR, James AA, Kaufman TC, Knoblich J, Malik HS, Matthews KA, O’Connor-Giles KM, Parks AL, Perrimon N, Port F, Russell S, Ueda R, Wildonger J.

Science. 2015 Aug 28;349(6251):927-9. doi: 10.1126/science.aac7932. Epub 2015 Jul 30. No abstract available.

PMID: 26229113

MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori.

Ling L, Ge X, Li Z, Zeng B, Xu J, Chen X, Shang P, James AA, Huang Y, Tan A. RNA Biol. 2015;12(7):742-8. doi:    10.1080/15476286.2015.1048957.

PMID: 26037405

Alonso-Morales A, González-López L, Cázares-Raga FE, Cortés-Martínez L, Torres-Monzón JA, Gallegos-Pérez JL, Rodríguez MH, James AA, Hernández-Hernández Fde L.

Exp Parasitol. 2015 Sep;156:49-60. doi: 10.1016/j.exppara.2015.05.010. Epub 2015 May 22.

PMID: 26008612

Lo E, Yewhalaw D, Zhong D, Zemene E, Degefa T, Tushune K, Ha M, Lee MC, James AA, Yan G.

Malar J. 2015 Feb 19;14:84. doi: 10.1186/s12936-015-0596-4.

PMID: 25884875

Maternal germline-specific genes in the Asian malaria mosquito Anopheles stephensi: characterization and application for disease control.

Biedler JK, Qi Y, Pledger D, Macias VM, James AA, Tu Z.

G3 (Bethesda). 2014 Dec 5;5(2):157-66. doi: 10.1534/g3.114.015578. Erratum in: G3 (Bethesda). 2016 Dec 7;6(12 ):4239.


Active Genetics

Related Publications

  • Valentino Gantz and Ethan Bier, Science, April 24, 2015: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations.
  • Valentino Gantz, Nijole Jasinskiene, Olga Tatarenkova, Aniko Fazekas, Vanessa Macias, Ethan Bier and Anthony James, Proceedings of the National Academy of Sciences; Dec. 8, 2015: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.
  • Valentino Gantz, and Ethan Bier. BioEssays 38, 50-63. The dawn of active genetics.

NASEM guidance for gene-drive

Gene Drives and the U.S. Biotechnology Regulatory System Gene Drive report NASEM 2016