From: Treseder KK, Lennon JT. 2015. Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews 79:243-262.
Functional genes can indicate the genetic potential of fungal taxa to carry particular traits, and they are especially informative if their function has been empirically verified in mutant or transcription assays in at least one fungus (1-3). Of course, possession of a gene does not mean that gene is expressed or translated (4-6). Nevertheless, it is a useful tool to supplement empirical measurements of traits of fungal taxa (7), which can be limited owing to logistical challenges such as difficulty generating laboratory cultures or measuring functions in situ. Moreover, we can use functional genes to document linkages among traits within whole genomes. Where possible, we have identified experimentally-verified functional genes encoding ecosystem-related traits in fungi, and listed them in the table below.
For some enzymes, additional care must be taken to ensure that the functional gene encodes enzymes that are active in the appropriate sites. For example, fungi use chitinases internally to re-organize their own cell walls (8), and we would not consider this process to contribute to N depolymerization in soils. Nevertheless, gene GH18-5 has been verified as an extracellular chitinase, based on its sequence (8), mutation assays (9), the activity of purified protein (10), and secretion into growth medium (11). Moreover, in Trichoderma, its transcription is induced by C and N starvation (8, 12). Altogether, it is a good candidate as a standard extracellular chitinase used by fungi to acquire C or N, so we have listed it as such in Table 1. Likewise, only membrane transport proteins that internalize compounds from the environment are relevant for immobilization of nutrients, even though fungi use these proteins for intracellular transport as well. Thus, only functional genes for transporters that operate in the outer membrane are included in the table.
Fungal trait | Ecosystem function | Genes | Domain | Experimental evidence |
Decomposition | ||||
β-glucosidase | Breakdown of cellulose | GH1-1 | IPR001360 | (13-15) |
Cellobiohydrolase | Breakdown of cellulose | CBH1/cel7A & GH7 Family | IPR001722 | (16-19) |
Lytic polysaccharide monooxygenase | Breakdown of cellulose | AA9 Family | IPR005103 | (20-24) |
Lignin peroxidase | Breakdown of lignin | LIP, MNP, VPL | IPR001621 | (25-27) |
P and N transformation | ||||
Extracellular phosphatase | P mineralization | PHO3 in Neurospora | IPR000560 | (28, 29) |
Extracellular chitinase | N depolymerization | GH18-5 | IPR001223 | (8-12) |
Phosphate transporter | P immobilization | PHO4 in Neurospora | IPR001204 | (30-33) |
Ammonium transporter | N immobilization | AMT2 | IPR001905 | (34) |
Nitrate transporter | N immobilization | NRT2 | IPR004737 | (35-37) |
Amino acid permease | N immobilization | AAP1 & GAP1 | IPR004762 | (38-43) |
Denitrification | Denitrification | P450nor, NOR1, & nirK | n.a. | (44-48) |
Stress tolerance | ||||
β1,3-glucan synthase | C deposition | FKS1 | GO:0000148 | (49-52) |
Trehalase | C deposition | NTH1 | GO:0005991 | (53) |
RNA helicase | — | MRH4 | IPR014014 | (54-57) |
Melanin | C deposition | PKS1 in Colletotrichum | GO:0006582 | (58-61) |
- Grigoriev IV, Martinez DA, Salamov AA. 2006. Fungal genomic annotation. Appl Microbiol Biotechnol, Vol 6: Bioinformatics 6:123-142.
- Haas BJ, Zeng Q, Pearson MD, Cuomo CA, Wortman JR. 2011. Approaches to fungal genome annotation. Mycology 2:118-141.
- Dutilh BE, Backus L, Edwards RA, Wels M, Bayjanov JR, van Hijum SAFT. 2013. Explaining microbial phenotypes on a genomic scale: GWAS for microbes. Brief Funct Genomics 12:366-380.
- Pradet-Balade B, Boulmé F, Beug H, Müllner EW, Garcia-Sanz JA. 2001. Translation control: Bridging the gap between genomics and proteomics? Trends Biochem Sci 26:225-229.
- Wilmes P, Bond PL. 2006. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92-97.
- Myrold DD, Zeglin LH, Jansson JK. 2014. The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci Soc Am J 78:3-10.
- Myrold DD, Nannipieri P. 2014. Classical techniques versus omics approaches, p 179-187. In Nannipieri P, Pietramellara G, Renella G (ed), Omics in Soil Science. Caister Academic Press, Hethersett, UK.
- Seidl V, Huemer B, Seiboth B, Kubicek CP. 2005. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923-5939.
- Woo SL, Donzelli B, Scala F, Mach R, Harman GE, Kubicek CP, Del Sorbo G, Lorito M. 1999. Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant-Microbe Interact 12:419-429.
- Delacruz J, Hidalgogallego A, Lora JM, Benitez T, Pintortoro JA, Llobell A. 1992. Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:859-867.
- Garcia I, Lora JM, Delacruz J, Benitez T, Llobell A, Pintortoro JA. 1994. Cloning and characterization of a chitinase (CHIT42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 27:83-89.
- Donzelli BGG, Harman GE. 2001. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol 67:5643-5647.
- Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JHD, Glass NL. 2012. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad Sci U S A 109:6012-6017.
- Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JHD, Glass NL. 2009. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A 106:22157-22162.
- Eriksen DT, Hsieh PCH, Lynn P, Zhao HM. 2013. Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. Microb Cell Fact 12.
- Ilmen M, Saloheimo A, Onnela ML, Penttila ME. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63:1298-1306.
- Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M. 1983. Molecular clonin of exo-cellobiohydrolase I from Trichoderma reesi strain L27. Bio-Technology 1:691-696.
- Teeri T, Salovuori I, Knowles J. 1983. The molecular cloning of the major cellulase gene from Trichoderma reesi. Bio-Technology 1:696-699.
- Kumar R, Singh S, Singh OV. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377-391.
- Harris PV, Welner D, McFarland KC, Re E, Poulsen JCN, Brown K, Salbo R, Ding HS, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of Glycoside Hydrolase Family 61: Structure and function of a large, enigmatic family. Biochemistry 49:3305-3316.
- Karlsson J, Saloheimo M, Siika-aho M, Tenkanen M, Penttilä M, Tjerneld F. 2001. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem 268:6498-6507.
- Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. 2011. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007-7015.
- Hori C, Igarashi K, Katayama A, Samejima M. 2011. Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 321:14-23.
- Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan M-C, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LDH, Baker SE, Magnuson J, LaBoissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotech 29:922-927.
- Martínez ÁT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A. 2009. Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348-357.
- Tien M, Tu CPD. 1987. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326:520-523.
- Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. 2009. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441-452.
- Nelson RE, Lehman JF, Metzenberg RL. 1976. Regulation of phosphate metabolism in Neurospora crassa: Identification of the structural gene responsible for repressible acid phosphatase. Genetics 84:183-192.
- Han SW, Nahas E, Rossi A. 1987. Regulation of synthesis and secretion of acid and alkaline phosphatases in Neurospora crassa. Curr Genet 11:521-527.
- Bowman BJ, Allen KE, Slayman CW. 1983. Vanadate-resistant mutants of Neurospora crassa are deficient in a high-affinity phosphate transport system. J Bacteriol 153:292-296.
- Versaw WK, Metzenberg RL. 1995. Repressible cation-phosphate symporters in Neurospora crassa. Proc Natl Acad Sci U S A 92:3884-3887.
- Sengottaiyan P, Ruiz-Pavon L, Persson BL. 2013. Functional expression, purification and reconstitution of the recombinant phosphate transporter Pho89 of Saccharomyces cerevisiae. FEBS J 280:965-975.
- Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A, Pattison J. 1999. Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta-Rev Biomembr 1422:255-272.
- Mitsuzawa H. 2006. Ammonium transporter genes in the fission yeast Schizosaccharomyces pombe: role in ammonium uptake and a morphological transition. Genes Cells 11:1183-1195.
- Rekangalt D, Pepin R, Verner MC, Debaud JC, Marmeisse R, Fraissinet-Tachet L. 2009. Expression of the nitrate transporter nrt2 gene from the symbiotic basidiomycete Hebeloma cylindrosporum is affected by host plant and carbon sources. Mycorrhiza 19:143-148.
- Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L. 2003. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 43:199-205.
- Slot JC, Hallstrom KN, Matheny PB, Hibbett DS. 2007. Diversification of NRT2 and the origin of its fungal homolog. Mol Biol Evol 24:1731-1743.
- Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P. 2008. Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429-437.
- Nehls U, Kleber R, Wiese J, Hampp R. 1999. Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 144:343-349.
- Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B. 2010. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci U S A 107:18551-18556.
- Wipf D, Benjdia M, Tegeder M, Frommer WB. 2002. Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119-124.
- Grenson M, Hou C, Crabeel M. 1970. Multiplicity of amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103:770-777.
- Jauniaux J-C, Grenson M. 1990. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Eur J Biochem 190:39-44.
- Zhang L, Takaya N, Kitazume T, Kondo T, Shoun H. 2001. Purification and cDNA cloning of nitric oxide reductase cytochrome P450nor (CYP55A4) from Trichosporon cutaneum. Eur J Biochem 268:3198-3204.
- Zhang L, Shoun H. 2008. Purification and functional analysis of fungal nitric oxide reductase cytochrome P450nor, p 117-133. In Poole RK (ed), Globins and Other Nitric Oxide-Reactive Proteins, Part B, vol 437. Elsevier Academic Press Inc, San Diego.
- Chao LY, Rine J, Marletta MA. 2008. Spectroscopic and kinetic studies of Nor1, a cytochrome P450 nitric oxide reductase from the fungal pathogen Histoplasma capsulatum. Arch Biochem Biophys 480:132-137.
- Shoun H, Fushinobu S, Jiang L, Kim SW, Wakagi T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos Trans R Soc B-Biol Sci 367:1186-1194.
- Shoun H, Tanimoto T. 1991. Denitrification by the fungus Fusarium oxysporum and involvement of Cytochrome-P-450 in the respiratory nitrite reduction. J Biol Chem 266:11078-11082.
- Latgé J-P. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279-290.
- Bowman SM, Free SJ. 2006. The structure and synthesis of the fungal cell wall. Bioessays 28:799-808.
- Mazur P, Morin N, Baginsky W, el-Sherbeini M, Clemas JA, Nielsen JB, Foor F. 1995. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol 15:5671-5681.
- Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway. Genetics 189:1145-1175.
- Singer MA, Lindquist S. 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460-468.
- Schmidt U, Lehmann K, Stahl U. 2002. A novel mitochondrial DEAD box protein (Mrh4) required for maintenance of mtDNA in Saccharomyces cerevisiae. FEMS Yeast Res 2:267-276.
- Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW. 2011. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A 108:2831-2836.
- Shiratori A, Shibata T, Arisawa M, Hanaoka F, Murakami Y, Eki T. 1999. Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and northern analysis. Yeast 15:219-253.
- Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. 2004. Cold adaptation in budding yeast. Mol Biol Cell 15:5492-5502.
- Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara J-P. 2009. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 9:177.
- Feng B, Wang X, Hauser M, Kaufmann S, Jentsch S, Haase G, Becker JM, Szaniszlo PJ. 2001. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect Immun 69:1781-1794.
- Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I. 1995. Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Molec Gen Genet 249:162-167.
- Takano Y, Kubo Y, Kawamura C, Tsuge T, Furusawa I. 1997. The Alternaria alternata melanin biosynthesis gene restores appressorial melanization and penetration of cellulose membranes in the melanin-deficient albino mutant of Colletotrichum lagenarium. Fungal Genet Biol 21:131-140.