Publications

Shiu, J., Lentsch, G., Polleys, C. M., Mobasher, P., Ericson, M., Georgakoudi, I., Ganesan, A. K., & Balu, M. (2024). Noninvasive Imaging Techniques for Monitoring Cellular Response to Treatment in Stable Vitiligo. The Journal of investigative dermatology144(4), 912–915.e2.

Brindani, N., Vuong, L. M., Acquistapace, I. M., La Serra, M. A., Ortega, J. A., Veronesi, M., Bertozzi, S. M., Summa, M., Girotto, S., Bertorelli, R., Armirotti, A., Ganesan, A. K., & De Vivo, M. (2023). Design, Synthesis, In Vitro and In Vivo Characterization of CDC42 GTPase Interaction Inhibitors for the Treatment of Cancer. Journal of medicinal chemistry66(8), 5981–6001.

Shiu, J., Zhang, L., Lentsch, G., Flesher J., Jin, S., Polleys, C., Jo, S., Mizzoni, C., Mobasher, P., Kwan, J., Ruis-Diaz, F., Tromberg, B. J., Georgakoudi, I., Nie, Q., Balu, M., Ganesan, A. K. (2022). Multimodal analyses of vitiligo skin identifies tissue characteristics of stable disease. JCI Insight.

Jahid, S., Ortega, J. A., Vuong, L. M., Acquistapace, I. M., Hachey, S. J., Flesher, J. L., La Serra, M. A., Brindani, N., La Sala, G., Manigrasso, J., Arencibia, J. M., Bertozzi, S. M., Summa, M., Bertorelli, R., Armirotti, A., Jin, R., Liu, Z., Chen, C-F., Edwards, R., Hughes, C. C. W., De Vivo, D., Ganesan, A. K. (2022). Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Cell Reports.

Mobasher P, Shiu J, Lentsch G, Ganesan AK. (2021).Comparing the Efficacy of 2 Different Harvesting Techniques for Melanocyte Keratinocyte Transplantation in Vitiligo. Dermatol Surg.

Ruiz-Vega R, Chen CF, Razzak E, Vasudeva P, Krasieva TB, Shiu J, Caldwell MG, Yan H, Lowengrub J, Ganesan AK, Lander AD. (2020). Dynamics of nevus development implicate cell cooperation in the growth arrest of transformed melanocytes. Elife.

Flesher, J., Paterson, E., Vasudeva, P., Ruiz-Vega, R., Marshal, M., Pearlman, E., MacGregor, G., Neumann, J., Ganesan, A. (2019). Delineating the Role of MITF Isoforms in Pigmentation and Tissue Homeostasis. Pigment Cell & Melanoma Research 33(2), 279-292.

Liggins, M., Flesher L. J., Jahid, S., Vasudeva, P., Eby, V., Takasuga, S., Sasaki, J., Sasaki, T., Boissy, R. E., Ganesan A. K. (2018). PIKfyve regulates melanosome biogenesis. PLOS Genetics.

Ruiz, R., Jahid, S., Harris, M,. Marzese D. M., Espitia, F., Vasudeva, P., Chen, C-F., de Feraudy, S., Wu, J., Gillen, D. L., Krasieva, T. B., Tromberg, B. J., Pavan, W. J., Hoon D. S., Ganesan A. K. (2017). The RhoJ-BAD Signaling Network: An Achilles Heel for BRAF Mutant Melanomas. PLOS Genetics.

Chen, C-F., Ruiz-Vega, R., Vasudeva, P., Espitia, F.,  de Feraudy, S., Krasieva, T., Tromberg, B., Huang, S., Hoon, D., Garner, C., Ganesan, A. K. (2017). ATR Mutations Promote the Growth of Melanoma Tumors by Modulating the immune microenvironment. Cell Reports 18(10), 2331-2342.

Paterson, E., Fielder, T., MacGregor, G., Ito, S., Wakamatsu, K., Gillen, D., Eby, V., Boissy, R., Ganesan, A. K. (2015). Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle. PLOS ONE 10(11). 

Paterson, E., Ho, H., Kapadia, R., Ganesan, A. K. (2013). 9-cis retinoic acid is the ALDH1A1 product that stimulates melanogenesis. Experimental Dermatology 22(3), 202-209.

Ho, H., Soto-Hopkin, A., Kapadia, R., Vasudeva, P., Schilling, J., Ganesan, A. K. (2012). RhoJ Modulates Melanoma Invasion by Altering Actin Cytoskeletal Dynamics. PCMR 26(2), 218-225.

Ho, H., Aruri, J., Kapadia, R., Hootan, M., White, M. A., Ganesan, A. K. (2012). RhoJ and Pak Kinases Regulate Melanoma Chemoresistance by Suppressing Pathways that Sense DNA Damage. Cancer Research 72(21), 5516-5528.

Ho, H., Ganesan, A. K. (2011). The pleiotropic roles of autophagy regulators in melanogenesis. PCMR 24(4), 595-604.

Ho, H., Kapadia, R., Al-Tahan, S., Ahmad, S., Ganesan, A. K. (2011). WIPI1 Coordinates Melanogenic Gene Transcription and Melanosome Formation via TORC1 Inhibition. J Biol Chem 286(14), 12508-12523.

Ho, H., Milenković, T., Memišević, V., Aruri, J., Pržulj, N., Ganesan, A. K. (2010). Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets. BMC Systems Biology 4(84).

Milenkovic, T., Memisevic, V. Ganesan. A. K., Przulj, N. (2009). Systems-level Cancer Gene Identification from Protein Interaction Network Topology Applied to Melanogenesis-related Functional Genomics Data. J R Soc Interface 7(44), 423-437.

Ganesan, A. K., Ho, H., Bodemann, B., Petersen, S., Aruri, J., Koshy, S., Richardson, Z., Le, L. Q., Krasieva, T., Roth, M. G., Farmer, P., White, M. A. (2008). Genome-Wide siRNA-Based Functional Genomics of Pigmentation Identifies Novel Genes and Pathways That Impact Melanogenesis in Human Cells. PLoS Genet. 4(12).

Invited Review Articles, Commentaries and Book Chapters

Ho, H., Aruri, J., Ahmed, S., Ganesan A. K. (2010). Harnessing RNAi-Based Functional Genomics to Unravel the Molecular Complexity Underlying Skin Pigment Variation. RNA technologies and their Applications pp.227-253.